14.已知函數(shù)f(x)=Asin(ωx+φ),(A>0,ω>0,|φ|<$\frac{π}{2}$)的圖象與y軸的交點(diǎn)為($0,\frac{3}{2}$),它在y軸右側(cè)的第一個最高點(diǎn)和最低點(diǎn)分別為(x0,3),(x0+2π,-3).
(1)求函數(shù)y=f(x)的解析式;
(2)該函數(shù)的圖象可由y=sinx(x∈R)的圖象經(jīng)過怎樣的平移和伸縮變換得到?
(3)求這個函數(shù)的單調(diào)遞增區(qū)間和對稱中心.

分析 (1)由題意可得A,T,利用周期公式可求ω,又圖象與y軸交于點(diǎn)$(0,\frac{3}{2})$,結(jié)合范圍$|φ|<\frac{π}{2}$,可求φ,可得函數(shù)的解析式.
(2)根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律即可得解.
(3)令2kπ-$\frac{π}{2}$≤$\frac{1}{2}$x+$\frac{π}{6}$≤2kπ-$\frac{π}{2}$,k∈Z,解得函數(shù)的遞增區(qū)間,令$\frac{1}{2}$x+$\frac{π}{6}$=kπ,k∈Z,可得函數(shù)的對稱中心:

解答 ( 本題滿分為12分)
解:(1)由題意可得A=3,
由在y軸右側(cè)的第一個最大值點(diǎn)和最小值點(diǎn)分別為(x0,3),(x0+2π,-3),得:$\frac{T}{2}={x_0}+2π-{x_0}=2π$,
∴T=4π,從而$ω=\frac{1}{2}$,可得:f(x)=3sin($\frac{1}{2}$x+φ),
又圖象與y軸交于點(diǎn)$(0,\frac{3}{2})$,
∴$\frac{3}{2}=3sinφ$⇒$sinφ=\frac{1}{2}$,
∵由于$|φ|<\frac{π}{2}$,
∴$φ=\frac{π}{6}$,
∴函數(shù)的解析式為$f(x)=3sin(\frac{1}{2}x+\frac{π}{6})$,…(5分)
(2)將函數(shù)y=sinx的圖象向左平移$\frac{π}{6}$個單位,再將得函數(shù)的圖象縱坐標(biāo)不變,橫坐標(biāo)伸長為原來的兩倍,
最后將所得函數(shù)的圖象橫坐標(biāo)不變,縱坐標(biāo)伸長為原來的3倍得到函數(shù)$y=3sin(\frac{1}{2}x+\frac{π}{6})$的圖象,…(8分)
(3)令2kπ-$\frac{π}{2}$≤$\frac{1}{2}$x+$\frac{π}{6}$≤2kπ-$\frac{π}{2}$,k∈Z,解得x∈$[4kπ-\frac{4π}{3},4kπ+\frac{2π}{3}],(k∈Z)$,可得函數(shù)的遞增區(qū)間為:$[4kπ-\frac{4π}{3},4kπ+\frac{2π}{3}],(k∈Z)$,…(10分)
令$\frac{1}{2}$x+$\frac{π}{6}$=kπ,k∈Z,可得:x=2kπ-$\frac{π}{3}$,k∈Z,可得函數(shù)的對稱中心:$(-\frac{π}{3}+2kπ,0)(k∈Z)$.…(12分)

點(diǎn)評 本題主要考查了函數(shù)y=Asin(ωx+φ)的圖象變換,由y=Asin(ωx+φ)的部分圖象確定其解析式,正弦函數(shù)的圖象和性質(zhì),考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)f(x)=|x+1|的單調(diào)遞增區(qū)間為[-1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知向量$\overrightarrow{a}$=(cosθ,-sinθ),$\overrightarrow$=(3cosθ,sinθ),θ∈(0,π),若$\overrightarrow{a}$⊥$\overrightarrow$,則θ=( 。
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{π}{6}$或$\frac{5π}{6}$D.$\frac{π}{3}$或$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知定義在R上的函數(shù)f(x),對任意a,b∈R,都有f(a+b)=f(a)+f(b)-1,當(dāng)x>0時,f(x)>1;且f(2)=3,
(1)求f(0)及f(1)的值;
(2)判斷函數(shù)f(x)在R上的單調(diào)性,并給予證明;
(3)若f(-kx2)+f(kx-2)<2對任意的x∈R恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若函數(shù)y=f(x)在[-1,1]上單調(diào)遞減且f(2m)>f(1+m)則實(shí)數(shù)m的取值范圍是( 。
A.(1,+∞)B.(-∞,1)C.[-$\frac{1}{2}$,0]D.[-$\frac{1}{2}$,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)的定義域?yàn)椋?2,1),則函數(shù)f(2x-1)的定義域?yàn)椋ā 。?table class="qanwser">A.(-$\frac{1}{2}$,1)B.(-5,1)C.($\frac{1}{2}$,1)D.(-2,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.85(9) 轉(zhuǎn)換為十進(jìn)制數(shù)是77.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若a,b,c成等比數(shù)列,則方程ax2+bx+c=0( 。
A.有兩個不等實(shí)根B.有兩相等的實(shí)根C.無實(shí)數(shù)根D.無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{x+1≥0}\\{x-y+1≤0}\\{x+y-2≤0}\end{array}\right.$,則滿足${∫}_{1}^{t}$$\frac{1}{x}$dx=4x+y的t的最大值為( 。
A.e-4B.e-1C.1D.e${\;}^{\frac{7}{2}}$

查看答案和解析>>

同步練習(xí)冊答案