【題目】已知數(shù)列{an}中, ,若利用下面程序框圖計(jì)算該數(shù)列的第2016項(xiàng),則判斷框內(nèi)的條件是( )
A.n≤2014
B.n≤2016
C.n≤2015
D.n≤2017
【答案】B
【解析】解:通過分析,本程序框圖為“當(dāng)型“循環(huán)結(jié)構(gòu),
判斷框內(nèi)為滿足循環(huán)的條件,
第1次循環(huán),A= ,n=1+1=2,
第2次循環(huán),A= = ,n=2+1=3,
…
當(dāng)執(zhí)行第2016項(xiàng)時(shí),n=2017,由題意,此時(shí),應(yīng)該不滿足條件,退出循環(huán),輸出A的值.
所以,判斷框內(nèi)的條件應(yīng)為:n≤2016.
故選:B.
【考點(diǎn)精析】關(guān)于本題考查的程序框圖,需要了解程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準(zhǔn)確、直觀地表示算法的圖形;一個(gè)程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說明才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)已知圓的圓心是直線與軸的交點(diǎn),且與直線相切,求圓的標(biāo)準(zhǔn)方程;
(2)已知圓,直線過點(diǎn)與圓相交于兩點(diǎn),若,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知圓的圓心在直線上,且過點(diǎn),與直線相切.
()求圓的方程.
()設(shè)直線與圓相交于,兩點(diǎn).求實(shí)數(shù)的取值范圍.
()在()的條件下,是否存在實(shí)數(shù),使得弦的垂直平分線過點(diǎn),若存在,求出實(shí)數(shù)的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓及直線,直線被圓截得的弦長(zhǎng)為.
()求實(shí)數(shù)的值.
()求過點(diǎn)并與圓相切的切線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法:①殘差可用來判斷模型擬合的效果;
②設(shè)有一個(gè)回歸方程,變量x增加一個(gè)單位時(shí),y平均增加5個(gè)單位;
③線性回歸方程必過 ;
④在一個(gè)2×2列聯(lián)表中,由計(jì)算得=13.079,則有99%的把握確認(rèn)這兩個(gè)變量間有關(guān)系(其中);
其中錯(cuò)誤的個(gè)數(shù)是( )
A. 0 B. 1 C. 2 D. 3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定點(diǎn)M(1,0)和直線x=﹣1上的動(dòng)點(diǎn)N(﹣1,t),線段MN的垂直平分線交直線y=t于點(diǎn)R,設(shè)點(diǎn)R的軌跡為曲線E.
(1)求曲線E的方程;
(2)直線y=kx+b(k≠0)交x軸于點(diǎn)C,交曲線E于不同的兩點(diǎn)A,B,點(diǎn)B關(guān)于x軸的對(duì)稱點(diǎn)為點(diǎn)P.點(diǎn)C關(guān)于y軸的對(duì)稱點(diǎn)為Q,求證:A,P,Q三點(diǎn)共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在下列命題中:
①存在一個(gè)平面與正方體的12條棱所成的角都相等;
②存在一個(gè)平面與正方體的6個(gè)面所成較小的二面角都相等;
③存在一條直線與正方體的12條棱所成的角都相等;
④存在一條直線與正方體的6個(gè)面所成的角都相等.
其中真命題的個(gè)數(shù)為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)藝術(shù)專業(yè)400名學(xué)生參加某次測(cè)評(píng),根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機(jī)抽取了100名學(xué)生,記錄他們的分?jǐn)?shù),將數(shù)據(jù)分成7組:[20,30),[30,40),┄,[80,90],并整理得到如下頻率分布直方圖:
(Ⅰ)從總體的400名學(xué)生中隨機(jī)抽取一人,估計(jì)其分?jǐn)?shù)小于70的概率;
(Ⅱ)已知樣本中分?jǐn)?shù)小于40的學(xué)生有5人,試估計(jì)總體中分?jǐn)?shù)在區(qū)間[40,50)內(nèi)的人數(shù);
(Ⅲ)已知樣本中有一半男生的分?jǐn)?shù)不小于70,且樣本中分?jǐn)?shù)不小于70的男女生人數(shù)相等.試估計(jì)總體中男生和女生人數(shù)的比例.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)中,設(shè)橢圓:的左右兩個(gè)焦點(diǎn)分別為,,過右焦點(diǎn)且與軸垂直的直線與橢圓相交,其中一個(gè)交點(diǎn)為.
(1)求橢圓的方程;
(2)已知,經(jīng)過點(diǎn)且斜率為,直線與橢圓有兩個(gè)不同的和交點(diǎn),請(qǐng)問是否存在常數(shù),使得向量與共線?如果存在,求出的值;如果不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com