【題目】已知圓及直線,直線被圓截得的弦長為

)求實(shí)數(shù)的值.

)求過點(diǎn)并與圓相切的切線方程.

【答案】(1);(2)

【解析】

試題分析:(1)根據(jù)圓的方程找出圓心坐標(biāo)與圓的半徑,然后利用點(diǎn)到直線的距離公式表示出圓心到直線的距離,然后根據(jù)垂徑定理得到弦心距,弦的一半及圓的半徑成直角三角形利用勾股對了列出關(guān)于的方程,求出方程的解即可得到的值,然后由大于0,得到滿足題意的值;(2)(1)求出的值代入圓的方程中確定出圓的方程,即可得到圓心的坐標(biāo),并判斷得到已知點(diǎn)在圓外,分兩種情況:當(dāng)切線的斜率不存在時(shí),得到為圓的切線;當(dāng)切線的斜率存在時(shí),設(shè)切線的斜率為,和設(shè)出的寫出切線的方程,根據(jù)直線與圓相切時(shí)圓心到直線的距離等于圓的半徑利用點(diǎn)到直線的距離公式表示出圓心到切線的距離,讓等于圓的半徑即可列出關(guān)于的方程,求出方程的解即可得到的值的值代入所設(shè)的切線方程即可確定出切線的方程.

試題解析)根據(jù)題意可得圓心,半徑,則圓心到直線的距離,

由勾股定理可以知道,代入化簡得,

解得,

,

所以

)由(知圓,圓心為,半徑,

點(diǎn)到圓心的距離為,故點(diǎn)在圓外,

當(dāng)切線方程的斜率存在時(shí),設(shè)方程為,則圓心到切線的距離,

化簡得:,故

∴切線方程為,

,

當(dāng)切線方程斜率不存在時(shí),直線方程為與圓相切,

綜上,過點(diǎn)并與圓相切的切線方程為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足a1=0,an+1=an+2 +1
(1)求證數(shù)列{ }是等差數(shù)列,并求出an的通項(xiàng)公式;
(2)若bn= ,求數(shù)列的前n項(xiàng)的和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】31屆夏季奧林匹克運(yùn)動會于201685日至821日在巴西里約熱內(nèi)盧舉行.如表是近五屆奧運(yùn)會中國代表團(tuán)和俄羅斯代表團(tuán)獲得的金牌數(shù)的統(tǒng)計(jì)數(shù)據(jù)(單位:枚).

30屆倫敦

29屆北京

28屆雅典

27屆悉尼

26屆亞特蘭大

中國

38

51

32

28

16

俄羅斯

24

23

27

32

26

(1)根據(jù)表格中兩組數(shù)據(jù)在答題卡上完成近五屆奧運(yùn)會兩國代表團(tuán)獲得的金牌數(shù)的莖葉圖,并通過莖葉圖比較兩國代表團(tuán)獲得的金牌數(shù)的平均值及分散程度(不要求計(jì)算出具體數(shù)值,給出結(jié)論即可);

(2)如表是近五屆奧運(yùn)會中國代表團(tuán)獲得的金牌數(shù)之和(從第26屆算起,不包括之前已獲得的金牌數(shù))隨時(shí)間變化的數(shù)據(jù):

時(shí)間(屆)

26

27

28

29

30

金牌數(shù)之和(枚)

16

44

76

127

165

作出散點(diǎn)圖如圖:

由圖可以看出,金牌數(shù)之和與時(shí)間之間存在線性相關(guān)關(guān)系,請求出關(guān)于的線性回歸方程,并預(yù)測從第26屆到第32屆奧運(yùn)會時(shí)中國代表團(tuán)獲得的金牌數(shù)之和為多少?

附:對于一組數(shù)據(jù), ,…, ,其回歸直線的斜率和截距的最小二乘估計(jì)分別為:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】)已知三個(gè)點(diǎn),,圓的外接圓.

)求圓的方程.

)設(shè)直線,與圓交于兩點(diǎn),且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線的參數(shù)方程是為參數(shù)),曲線的參數(shù)方程是為參數(shù)).

(Ⅰ)將曲線,的參數(shù)方程化為普通方程;

(Ⅱ)求曲線上的點(diǎn)到曲線的距離的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】分)如圖,在三棱錐中,底面為等邊三角形,,,的中點(diǎn).

(Ⅰ)求證:

(Ⅱ)判斷在線段上是否存在點(diǎn)(與點(diǎn)不重合),使得為直角三角形?若存在,試找出一個(gè)點(diǎn),并求的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}中, ,若利用下面程序框圖計(jì)算該數(shù)列的第2016項(xiàng),則判斷框內(nèi)的條件是(

A.n≤2014
B.n≤2016
C.n≤2015
D.n≤2017

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:

該興趣小組確定的研究方案是:先用2、3、4、5月的4組數(shù)據(jù)求線性回歸方程,再用1月和6月的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

(1)請根據(jù)2、3、4、5月的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;

(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?

(參考公式:

參考數(shù)據(jù):11×25+13×29+12×26+8×16=1092,112+132+122+82=498.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 滿足2Sn=an+1﹣2n+1+1,n∈N* , 且a1 , a2+5,a3成等差數(shù)列.
(1)求a1的值;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)證明:對一切正整數(shù)n,有

查看答案和解析>>

同步練習(xí)冊答案