已知雙曲線的中心在坐標(biāo)原點,兩個焦點為F1(-
7
,0),F(xiàn)2
7
,0),點P是此雙曲線上的一點,且
PF1
PF2
=0,|
PF1
|•|
PF2
|=4,該雙曲線的標(biāo)準(zhǔn)方程是( 。
A.
x2
4
-
y2
3
=1
B.
x2
3
-
y2
4
=1
C.
x2
5
-
y2
2
=1
D.
x2
2
-
y2
5
=1
設(shè)雙曲線的方程為:
x2
a2
-
y2
b2
=1,
∵兩焦點F1(-
7
,0),F(xiàn)2
7
,0),且
PF1
PF2
=0,
PF1
PF2

∴△F1PF2為直角三角形,∠P為直角;
|PF1|2+|PF2|2=|F1F2|2=(2
7
)
2
=28;①
又點P是此雙曲線上的一點,
∴||PF1|-|PF2||=2a,
|PF1|2+|PF2|2-2|PF1|•|PF2|=4a2,由|
PF1
|•|
PF2
|=4得|PF1|•|PF2|=4,
|PF1|2+|PF2|2-8=4a2,②
由①②得:a2=5,又c2=(
7
)
2
=7,
∴b2=c2-a2=2.
∴雙曲線的方程為:
x2
5
-
y2
2
=1,
故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的中心在坐標(biāo)原點,一個焦點為F(10,0),兩條漸近線的方程為y=±
43
x
,則該雙曲線的標(biāo)準(zhǔn)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的中心在坐標(biāo)原點,焦點在x軸上,實軸長是虛軸長的3倍,且過點(3
2
,1)
,求雙曲線的標(biāo)準(zhǔn)方程及離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•南京一模)已知雙曲線的中心在坐標(biāo)原點O,焦點在y軸上,它的虛軸長為2,且焦距是兩準(zhǔn)線間距離的2倍,則該雙曲線的方程為
y2-x2=1
y2-x2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•濰坊二模)已知雙曲線的中心在坐標(biāo)原點,焦點在x軸上,且一條漸近線為直線
3
x+y=0
,則該雙曲線的離心率等于
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•紅橋區(qū)二模)已知雙曲線的中心在坐標(biāo)原點,離心率e=2,且它的一個頂點與拋物線y2=-4x的焦點重合,則此雙曲線的方程為(  )

查看答案和解析>>

同步練習(xí)冊答案