A. | $\overrightarrow{AD}=\frac{1}{2}\overrightarrow{AB}+\frac{3}{2}\overrightarrow{AC}$ | B. | $\overrightarrow{AD}=-\frac{1}{2}\overrightarrow{AB}+\frac{3}{2}\overrightarrow{AC}$ | C. | $\overrightarrow{AD}=-\frac{3}{2}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AC}$ | D. | $\overrightarrow{AD}=\frac{3}{2}\overrightarrow{AB}-\frac{1}{2}\overrightarrow{AC}$ |
分析 根據(jù)向量的加法法則運算即可得到答案.
解答 解:由題意:D為△ABC所在平面內(nèi)的一點,如圖:
可得:$\overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{AC}$…①
$\overrightarrow{AC}+\overrightarrow{CD}=\overrightarrow{AD}$…②
∵$\overrightarrow{BC}=2\overrightarrow{CD}$,
代入①$\overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{AC}$中可得:
$\overrightarrow{AB}+2\overrightarrow{CD}=\overrightarrow{AC}$…③
由②③消去$\overrightarrow{CD}$可得:$\overrightarrow{AD}=-\frac{1}{2}\overrightarrow{AB}+\frac{3}{2}\overrightarrow{AC}$.
故選B.
點評 本題考查向量的加法法則的基本運算,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {2,1} | B. | {x=2,y=1} | C. | {(2,1)} | D. | (2,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,2] | B. | (-∞,0]∪[2,+∞) | C. | [2,+∞) | D. | [-$\frac{1}{2}$,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | $-\frac{1}{2}$ | C. | 0 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 27 | B. | 81 | C. | 243 | D. | 729 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分必要條件 | B. | 充分不必要條件 | ||
C. | 必要不充分條件 | D. | 不充分不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com