16.已知函數(shù)f(x)=log0.5(x+$\frac{1}{x}$),下列說(shuō)法:
(1)f(x)的定義域?yàn)椋?,+∞);
(2)f(x)的值域?yàn)閇-1,+∞);
(3)f(x)是奇函數(shù);
(4)f(x)在(0,1)上單調(diào)遞增.
其中說(shuō)法正確的是(1)(4).

分析 根據(jù)已知中的函數(shù)的解析式,求出函數(shù)的定義域,值域,奇偶性和單調(diào)性,可得結(jié)論.

解答 解:由x與$\frac{1}{x}$同號(hào)可得:x+$\frac{1}{x}$>0時(shí),x>0,
故f(x)的定義域?yàn)椋?,+∞),故(1)正確;
當(dāng)x>0時(shí),x+$\frac{1}{x}$≥2,
故f(x)=log0.5(x+$\frac{1}{x}$)≤-1,
故f(x)的值域?yàn)椋?∞,-1],故(2)錯(cuò)誤;
函數(shù)的定義域不關(guān)于原點(diǎn)對(duì)稱(chēng),故為非奇非偶函數(shù),故(3)錯(cuò)誤;
當(dāng)x∈(0,1)時(shí),t=x+$\frac{1}{x}$為減函數(shù),f(x)=log0.5(x+$\frac{1}{x}$)為增函數(shù),故(4)正確;
故答案為:(1)(4)

點(diǎn)評(píng) 本題以命題的真假判斷與應(yīng)用為載體,考查了函數(shù)的定義域,值域,奇偶性和單調(diào)性,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.如果定義在(-∞,0)∪(0,+∞)上的奇函數(shù)f(x)在(0,+∞)內(nèi)是減函數(shù),又有f(3)=0,則f(x)>0的解集為(-∞,-3)∪(0,3),x•f(x)<0的解集為(-∞,-3)∪(3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)數(shù)列{an}的前n項(xiàng)和Sn=n3,則a4的值為( 。
A.15B.37C.27D.64

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.下列運(yùn)算結(jié)果正確的是(  )
A.a3+a2=a5B.(x+y)2=x2+y2C.x6+x2=x4D.(ab)2=a2b2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.下列各組函數(shù)中,表示同一函數(shù)的是( 。
A.f(x)=1,g(x)=x0B.f(x)=|x|,g(x)=$\left\{\begin{array}{l}x,x≥0\\-x,x<0\end{array}\right.$
C.f(x)=x+2,g(x)=$\frac{{{x^2}-4}}{x-2}$D.f(x)=x,g(x)=($\sqrt{x}$)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.cos105°cos45°+sin45°sin105°的值( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=x2-2ax+1.
(I)當(dāng)a=2,x∈[-2,3]時(shí),求函數(shù)的值域;
(II)求函數(shù)f(x)在[-1,2]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.某程序框圖如圖所示,若n=3,a0=1,a1=2,a2=3,a3=-2,x=2.則該程序運(yùn)行后輸出的值為( 。
A.1B.0C.-1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.在△ABC中,AB=3,AC=5,cosA=$\frac{1}{15}$,點(diǎn)P在平面ABC內(nèi),且$\overrightarrow{PB}$•$\overrightarrow{PC}$=-4,則|$\overrightarrow{PB}$+$\overrightarrow{PC}$+2$\overrightarrow{PA}$|的最大值是14.

查看答案和解析>>

同步練習(xí)冊(cè)答案