14.甲乙丙丁四個物體同時從某一點出發(fā)向同一個方向運動,其路程fi(x)(i=1,2,3,4)關于時間x(x≥0)的函數(shù)關系式分別為${f_1}(x)={2^x}-1,{f_2}(x)={x^3},{f_3}(x)=x,{f_4}(x)={log_2}(x+1)$,
有以下結論:
①當x>1時,甲在最前面;
②當x>1時,乙在最前面;
③當0<x<1時,丁在最前面,當x>1時,丁在最后面;
④丙不可能在最前面,也不可能最最后面;
⑤如果它們已知運動下去,最終在最前面的是甲.
其中,正確結論的序號為③④⑤(把正確結論的序號都填上,多填或少填均不得分)

分析 分別取特值驗證命題①②;對數(shù)型函數(shù)的變化是先快后慢,當x=1時甲、乙、丙、丁四個物體又重合,從而判斷命題③正確;結合對數(shù)型和指數(shù)型函數(shù)的圖象變化情況,可知命題④正確;指數(shù)函數(shù)變化是先慢后快,當運動的時間足夠長,最前面運動的物體一定是按照指數(shù)型函數(shù)運動的物體,即一定是甲物體.

解答 解:路程fi(x)(i=1,2,3,4)關于時間x(x≥0)的函數(shù)關系式分別為:
${f_1}(x)={2^x}-1,{f_2}(x)={x^3},{f_3}(x)=x,{f_4}(x)={log_2}(x+1)$,
它們相應的函數(shù)模型分別是指數(shù)型函數(shù),冪函數(shù),一次函數(shù),和對數(shù)型函數(shù)模型;
①當x=2時,f1(2)=3,f2(2)=8,∴該結論不正確;
②∵指數(shù)型的增長速度大于冪函數(shù)的增長速度,∴x>1時,甲總會超過乙的,∴該結論不正確;
③根據(jù)四種函數(shù)的變化特點,對數(shù)型函數(shù)的變化是先快后慢,當x=1時甲、乙、丙、丁四個物體重合,從而可知當0<x<1時,丁走在最前面,當x>1時,丁走在最后面,∴該結論正確;
④結合對數(shù)型和指數(shù)型函數(shù)的圖象變化情況,可知丙不可能走在最前面,也不可能走在最后面,∴該結論正確;
⑤指數(shù)函數(shù)變化是先慢后快,當運動的時間足夠長,最前面運動的物體一定是按照指數(shù)型函數(shù)運動的物體,即一定是甲物體,∴該結論正確.
∴正確結論的序號為:③④⑤.
故答案為:③④⑤.

點評 本題考查幾種基本初等函數(shù)的變化趨勢,關鍵是注意到對數(shù)函數(shù)、指數(shù)函數(shù)與冪函數(shù)的增長差異,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=cos2x+asinx+2a-1,a∈R.
(1)當a=1時,求函數(shù)的最值并求出對應的x值;
(2)如果對于區(qū)間$[-\frac{π}{2},\frac{π}{2}]$上的任意一個x,都有f(x)≤5恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知函數(shù)f(x)=$\frac{2lnx+{a}^{2}}{x}$+bx-2a(a∈R),其中b=${∫}_{0}^{\frac{π}{2}}$(2sin$\frac{t}{2}$•cos$\frac{t}{2}$)dt,若?x∈(1,2),使得f′(x)•x+f(x)>0成立,則實數(shù)a的取值范圍為( 。
A.(-∞,1)B.(0,1]C.(-∞,$\frac{5}{2}$)D.(-∞,$\frac{5}{2}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.設x1=4,x2=5,x3=6,則該樣本的標準差為( 。
A.$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{6}}{3}$C.$\frac{\sqrt{5}}{3}$D.$\frac{\sqrt{7}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.若圓的參數(shù)方程為x=-1+2cost,y=3+2sint(t為參數(shù)),直線的參數(shù)方程為x=2m-1,y=6m-1(m為參數(shù)),則直線與圓的位置關系是( 。
A.過圓心B.相交而不過圓心C.相切D.相離

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.函數(shù)f(x)=x+sinx在$x=\frac{π}{2}$處的切線與兩坐標軸圍成的三角形面積為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.若實數(shù)x,y在條件$\left\{\begin{array}{l}x+y≤4\\ x≥1\\ y≥m\end{array}\right.$下,所表示的平面區(qū)域面積為2,則$\frac{x+y+2}{x+1}$的最小值為( 。
A.$\frac{1}{2}$B.$\frac{3}{2}$C.$\frac{2}{3}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.高為$\sqrt{2}$的四棱錐S-ABCD的底面是邊長為1的正方形,點S、A、B、C、D均同一球面上,底面ABCD的中心為O1,球心O到底面ABCD的距離為$\frac{{\sqrt{2}}}{2}$,則異面直線SO1與AB所成角的余弦值的范圍為[0,$\frac{\sqrt{10}}{10}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.設f(x)是定義在R上的周期為3的函數(shù),當x∈[-2,1)時,$f(x)=\left\{\begin{array}{l}4{x^2}-2,-2≤x≤0\\ x,0<x<1\end{array}\right.$,則$f(\frac{5}{2})$=( 。
A.0B.1C.$\frac{1}{2}$D.-1

查看答案和解析>>

同步練習冊答案