19.函數(shù)f(x)=x+sinx在$x=\frac{π}{2}$處的切線與兩坐標(biāo)軸圍成的三角形面積為$\frac{1}{2}$.

分析 求出函數(shù)的導(dǎo)數(shù),可得切線的斜率,可得切線的方程,求得x,y軸的截距,運(yùn)用三角形的面積公式,計(jì)算即可得到所求值.

解答 解:f(x)=x+sinx,則f'(x)=1+cosx,
∴f'($\frac{π}{2}$)=1,而f($\frac{π}{2}$)=$\frac{π}{2}$+1,
故切線方程為y-($\frac{π}{2}$+1)=x-$\frac{π}{2}$.
令x=0,可得y=1;令y=0,可得x=-1.
故切線與兩坐標(biāo)圍成的三角形面積為$\frac{1}{2}×1×1$=$\frac{1}{2}$.
故答案為:$\frac{1}{2}$.

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的方程,考查導(dǎo)數(shù)的幾何意義,以及直線方程的運(yùn)用,正確求導(dǎo)是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.極坐標(biāo)系的極點(diǎn)為直角坐標(biāo)系xoy的原點(diǎn),極軸為x軸的正半軸,兩種坐標(biāo)系中的長(zhǎng)度單位相同,已知曲線C的極坐標(biāo)方程為ρ=4(cosθ+sinθ).
(Ⅰ)求C的直角坐標(biāo)方程;
(Ⅱ)直線l:$\left\{\begin{array}{l}x=\frac{1}{2}t\\ y=1+\frac{{\sqrt{3}}}{2}t\end{array}\right.(t$為參數(shù))與曲線C交于A,B兩點(diǎn),定點(diǎn)E(0,1),求|EA|•|EB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.用秦九韶算法求多項(xiàng)式f(x)=x6-8x5+60x4+16x3+96x2+240x+64在x=2時(shí),v2的值為48.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)X是一個(gè)離散型隨機(jī)變量,則下列不能成為X的概率分布列的一組數(shù)據(jù)是( 。
A.0,$\frac{1}{2}$,0,0,$\frac{1}{2}$B.0.1,0.2,0.3,0.4
C.p,1-p(0≤p≤1)D.$\frac{1}{1×2}$,$\frac{1}{2×3}$,…,$\frac{1}{7×8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.甲乙丙丁四個(gè)物體同時(shí)從某一點(diǎn)出發(fā)向同一個(gè)方向運(yùn)動(dòng),其路程fi(x)(i=1,2,3,4)關(guān)于時(shí)間x(x≥0)的函數(shù)關(guān)系式分別為${f_1}(x)={2^x}-1,{f_2}(x)={x^3},{f_3}(x)=x,{f_4}(x)={log_2}(x+1)$,
有以下結(jié)論:
①當(dāng)x>1時(shí),甲在最前面;
②當(dāng)x>1時(shí),乙在最前面;
③當(dāng)0<x<1時(shí),丁在最前面,當(dāng)x>1時(shí),丁在最后面;
④丙不可能在最前面,也不可能最最后面;
⑤如果它們已知運(yùn)動(dòng)下去,最終在最前面的是甲.
其中,正確結(jié)論的序號(hào)為③④⑤(把正確結(jié)論的序號(hào)都填上,多填或少填均不得分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.如圖為體積是3的幾何體的三視圖,則正視圖的x值是( 。
A.2B.$\frac{9}{2}$C.$\frac{3}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知α,β是兩個(gè)不同的平面,m,n是兩條不同的直線,有下列命題:
①若m,n平行于同一平面,則m與n平行;
②若m⊥α,n∥α,則m⊥n;
③若α,β不平行,則在α內(nèi)不存在與β平行的直線;
④若α∩β=n,m∥n,則m∥α且m∥β;
⑤若m∥n,α∥β,則m與α所成角等于n與β所成角.
其中真命題有②⑤.(填寫(xiě)所有正確命題的編號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)$f(x)=xlnx-x+\frac{1}{2}{x^2}-\frac{1}{3}a{x^3}$,令f(x)的導(dǎo)函數(shù)為y=g(x).
(I)判定y=g(x)在其定義域內(nèi)的單調(diào)性;
(II)若曲線y=f(x)上存在兩條傾斜角為銳角且互相平行的切線,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.等腰△ABC的底邊$AB=6\sqrt{6}$,高CD=3,點(diǎn)E是線段BD上異于點(diǎn)B,D的動(dòng)點(diǎn).點(diǎn)F在BC邊上,且EF⊥AB.現(xiàn)沿EF將△BEF折起到△PEF的位置,使PE⊥AE.
(Ⅰ)證明EF⊥平面PAE;
(Ⅱ)記BE=x,V(x)表示四棱錐P-ACFE的體積,求V(x)的最值.

查看答案和解析>>

同步練習(xí)冊(cè)答案