求經(jīng)過圓C1:x2+y2-4x+2y+1=0與圓C2:x2+y2-6x=0的交點(diǎn)且過點(diǎn)(2,-2)的圓的方程.
考點(diǎn):圓的切線方程
專題:計(jì)算題,直線與圓
分析:設(shè)經(jīng)過圓C1:x2+y2-4x+2y+1=0與圓C2:x2+y2-6x=0的交點(diǎn)的圓的方程,代入點(diǎn)(2,-2),可得λ的值,即可得到圓的方程.
解答: 解:設(shè)經(jīng)過圓C1:x2+y2-4x+2y+1=0與圓C2:x2+y2-6x=0的交點(diǎn)的圓的方程為(x2+y2-4x+2y+1)+λ(x2+y2-6x)=0,
代入點(diǎn)(2,-2),可得(4+4-8-4+1)+λ(4+4-12)=0,
∴λ=-
3
4
,
∴圓的方程為(x2+y2-4x+2y+1)-
3
4
(x2+y2-6x)=0,即x2+y2+2x+8y+4=0.
點(diǎn)評:本題考查圓的方程,考查學(xué)生的計(jì)算能力,正確設(shè)出圓的方程是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c分別是內(nèi)角A,B,C所對的邊,c2=a2+b2-ab.
(1)求角C;
(2)若a=
3
,sinB=2sinA,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=
9
2
,Sn+Sn-1=2an,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c為非零實(shí)數(shù),且a2+b2+c2+1-m=0,
1
a2
+
4
b2
+
9
c2
+1-2m=0.
(1)求證
1
a2
+
4
b2
+
9
c2
36
a2+b2+c2

(2)求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一顆質(zhì)地均勻的立方體骰子六個面標(biāo)有1,2,3,4,5,6,連續(xù)拋擲骰子,設(shè)每次拋擲相互獨(dú)立,且每次拋擲每面出現(xiàn)概率相同,令第?次得到的點(diǎn)數(shù)為a?,若存在正整數(shù)k使a1+a2+…+ak=6,則稱k為幸運(yùn)數(shù)字,求幸運(yùn)數(shù)字為4的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,點(diǎn)A(0,3),設(shè)圓C的半徑為1,圓心在直線l:y=2x-4上.
(1)若圓心C也在直線y=x-1上,過點(diǎn)B(2,4)作圓C的切線,求切線的方程;
(2)若圓C上存在點(diǎn)M,使MA=2MO,求圓心C的橫坐標(biāo)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

E為圓內(nèi)兩弦AB和CD的交點(diǎn),過點(diǎn)E作AD的平行線交BC的延長線于點(diǎn)F.
(1)求證:△EFC∽△BFE;
(2)若AE=
1
2
EB,DE=6,CE=5,延長BA至點(diǎn)P,PA=AE且PD切圓于點(diǎn)D,求PD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=e-0.5x+1在x=4處的導(dǎo)數(shù)f′(4)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若tanA=
1
2
,tanB=
1
3
,則∠C=
 

查看答案和解析>>

同步練習(xí)冊答案