已知雙曲線的對稱軸為坐標軸,兩個頂點間的距離為2,焦點到漸進線的距離為
2
,求該雙曲線的方程.
考點:雙曲線的標準方程
專題:圓錐曲線的定義、性質與方程
分析:討論焦點在x軸上時,求出雙曲線的標準方程,再求出焦點在y軸上時,雙曲線的標準方程即可.
解答: 解:當焦點在x軸上時,根據(jù)題意得;
2a=2,∴a=1;
∴F(c,0)到漸近線y=
b
a
x的距離為
d=
bc
b2+a2
=b=
2
,
∴雙曲線的標準方程為x2-
y2
2
=1;
同理,當焦點在y軸上時,雙曲線的標準方程為y2-
x2
2
=1;
綜上,雙曲線的標準方程為x2-
y2
2
=1或y2-
x2
2
=1.
點評:本題考查了雙曲線的定義與標準方程以及幾何性質的應用問題,是基礎題目.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知
C
m-1
n
2
=
C
m
n
3
=
C
m+1
n
4
,則m與n的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在區(qū)間[-1,1]上任取兩個數(shù)a、b,則點(-1,1)與點(1,1)在直線ax+by+1=0的兩側的概率等于( 。
A、
1
4
B、
3
4
C、
1
8
D、
7
8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的一條漸近線方程是y=-
3
x,它的一個焦點在拋物線y2=-24x的準線上,則雙曲線的方程為( 。
A、
x2
36
-
y2
108
=1
B、
x2
27
-
y2
9
=1
C、
x2
108
-
y2
56
=1
D、
x2
9
-
y2
27
=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓O的方程(x-3)2+(y-4)2=25,點(2,3)到圓上的最大距離為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某校高三年級的學生紀律檢查小組由16位同學組成,其中一、二、三、四班各有4人從中任選3人,要求這3人不能選自同一個班,且一班最多選1人,則不同的選法的種數(shù)為( 。
A、232B、272
C、424D、472

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)求cos
π
7
cos
7
cos
7
的值;
(2)已知cos(
π
3
-α)=
1
3
,求cos(
π
3
+2α)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某生物研究所進行物種雜交試驗,雜交后形成的新生物從出生算起活到3個月的概率為
3
4
,活到1年的概率為x,現(xiàn)有一只3個月的這種生物,若它能活到1年的概率為
1
3
,則x的值為( 。
A、
3
4
B、
1
3
C、
2
3
D、
1
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知點A(11,0),函數(shù)y=
x+1
的圖象上的動點P在x軸上的射影為H,且點H在點A的左側,設|PH|=t,△APH的面積為f(t)
(1)求函數(shù)f(t)的解析式及t的取值范圍.
(2)若a∈(0,2
3
),求函數(shù)f(t)在(0,a]上的最大值.

查看答案和解析>>

同步練習冊答案