11.已知函數(shù)f(x)=lnx-x-3.
(Ⅰ)求函數(shù)f(x)的最大值;
(Ⅱ)求證:ln(22+1)+ln(32+1)+ln(42+1)+…ln(n2+1)<1+2lnn!(n≥2,n∈N*

分析 (I)判斷f(x)的單調(diào)性,從而計算f(x)的最大值;
(II)根據(jù)f(x)在(1,+∞)上單調(diào)遞減可得f(x)<-4,化簡得ln(x)<x-1,利用對數(shù)的運算性質(zhì)計算ln(22+1)+ln(32+1)+ln(42+1)+…ln(n2+1)-2lnn!,根據(jù)f(x)的單調(diào)性化簡,再使用不等式性質(zhì)得出結(jié)論.

解答 解:(I)f′(x)=$\frac{1}{x}-1$,令f′(x)=0得x=1,
∴當(dāng)0<x<1時,f′(x)>0,當(dāng)x>1時,f′(x)<0,
∴f(x)在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減,
∴f(x)的最大值為f(1)=-4.
(II)證明:∵f(x)=lnx-x-3在(1,+∞)上單調(diào)遞減,
∴f(x)<f(1)=-4,即lnx-x-3<-4,
∴l(xiāng)nx<x-1在(1,+∞)上恒成立,
∴l(xiāng)n($\frac{1}{{n}^{2}}$+1)<$\frac{1}{{n}^{2}}$,
∴l(xiāng)n(22+1)+ln(32+1)+ln(42+1)+…+ln(n2+1)-2lnn!
=ln$\frac{({2}^{2}+1)•({3}^{2}+1)•…•({n}^{2}+1)}{{n}^{2}•(n-1)^{2}•(n-3)^{2}•…•{2}^{2}}$
=ln[(1+$\frac{1}{{2}^{2}}$)(1+$\frac{1}{{3}^{2}}$)…(1+$\frac{1}{{n}^{2}}$)]
=ln(1+$\frac{1}{{2}^{2}}$)+ln(1+$\frac{1}{{3}^{2}}$)+…+ln(1+$\frac{1}{{n}^{2}}$)
<$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{4}^{2}}$+…+$\frac{1}{{n}^{2}}$
<$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{n(n-1)}$
=1-$\frac{1}{2}+\frac{1}{2}-\frac{1}{3}$+…+$\frac{1}{n-1}-\frac{1}{n}$
=1-$\frac{1}{n}$<1.

點評 本題考查導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,利用函數(shù)性質(zhì)證明不等式,以及考查學(xué)生創(chuàng)造性的分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.某中學(xué)數(shù)學(xué)老師分別用兩種不同教學(xué)方式對入學(xué)數(shù)學(xué)平均分和優(yōu)秀率都相同的甲、乙兩個高一新班(人數(shù)均為20人)進(jìn)行教學(xué)(兩班的學(xué)生學(xué)習(xí))(兩班的學(xué)生學(xué)習(xí)數(shù)學(xué)勤奮程度和自覺性都一樣).如圖所示莖葉圖如.

(1)現(xiàn)從乙班數(shù)學(xué)成績不低于80分的同學(xué)中隨機(jī)抽取兩名同學(xué),求至少有一名成績?yōu)?0分的同學(xué)被抽中的概率;
(2)學(xué)校規(guī)定:成績不低于75分的為優(yōu)秀.請?zhí)顚懴旅娴?×2表,并判斷有多大把握認(rèn)為“成績優(yōu)秀與教學(xué)方式有關(guān)”.
甲班乙班合計
優(yōu)秀14822
不優(yōu)秀61218
合計202040
附參考公式及數(shù)據(jù):
P(x2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.7910.828
(K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=x-alnx+b,a,b為實數(shù).
(Ⅰ)若曲線y=f(x)在點(1,f(1))處的切線方程為y=2x+3,求a,b的值;
(Ⅱ)若|f′(x)|<$\frac{3}{{x}^{2}}$對x∈[2,3]恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.“x≥1”是“l(fā)gx≥0”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知拋物線y=$\frac{1}{8}$x2,則其準(zhǔn)線方程是y=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點.
(1)證明:PB∥平面AEC;
(2)設(shè)AP=1,AD=$\sqrt{3}$,三棱錐P-ABD的體積V=$\frac{{\sqrt{3}}}{4}$,求二面角A-PB-D的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=$\frac{1}{3}{x^3}-{x^2}-3x-\frac{1}{3}$.
(1)求函數(shù)y=f(x)在(1,f(1))點處的切線方程;
(2)求函數(shù)y=f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.定義在(-1,1)的函數(shù)f(x)滿足:①對任意x,y∈(-1,1)都有f(x)+f(y)=f($\frac{x+y}{1+xy}$);②當(dāng)x<0時,f(x)>0.回答下列問題:
(1)判斷函數(shù)f(x)的奇偶性,并說明理由;
(2)判斷函數(shù)f(x)在(0,1)上的單調(diào)性,并說明理由;
(3)若f($\frac{1}{5}$)=$\frac{1}{2}$,試求f($\frac{1}{2}$)-f($\frac{1}{11}$)-f($\frac{1}{19}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖,矩形ABCD中,$AB=\sqrt{2}AD$,E為邊AB的中點,將△ADE沿直線DE翻轉(zhuǎn)成△A1DE.若M為線段A1C的中點,則在△ADE翻轉(zhuǎn)過程中,下列結(jié)論中:①|(zhì)BM|是定值;②點M在球面上運動;③DE⊥A1C;④MB∥平面A1DE.其中錯誤的有( 。﹤
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊答案