分析 (I)根據(jù)導(dǎo)數(shù)的幾何意義可得f′(1)=2,f(1)=5,列方程組解出a,b即可;
(II)分離參數(shù)得出x-$\frac{3}{x}$<a<x+$\frac{3}{x}$,分別求出左側(cè)函數(shù)的最大值和右側(cè)函數(shù)的最小值即可得出a的范圍.
解答 解:(I)f′(x)=1-$\frac{a}{x}$,
∵曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為y=2x+3,
∴f′(1)=2,f(1)=5,
∴$\left\{\begin{array}{l}{1-a=2}\\{1+b=5}\end{array}\right.$,解得a=-1,b=4.
(II)∵|f′(x)|<$\frac{3}{{x}^{2}}$對(duì)x∈[2,3]恒成立,即|1-$\frac{a}{x}$|<$\frac{3}{{x}^{2}}$對(duì)x∈[2,3]恒成立,
∴|x-a|<$\frac{3}{x}$對(duì)x∈[2,3]恒成立,
∴x-$\frac{3}{x}$<a<x+$\frac{3}{x}$對(duì)x∈[2,3]恒成立,
設(shè)g(x)=x-$\frac{3}{x}$,h(x)=x+$\frac{3}{x}$,x∈[2,3],
則g′(x)=1+$\frac{3}{{x}^{2}}$>0,h′(x)=1-$\frac{3}{{x}^{2}}$>0,
∴g(x)在[2,3]上是增函數(shù),h(x)在[2,3]上是增函數(shù),
∴gmax(x)=g(3)=2,hmin(x)=h(2)=$\frac{7}{2}$.
∴a的取值范圍是[2,$\frac{7}{2}$].
點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的幾何意義,導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,函數(shù)最值的計(jì)算,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 1 | C. | $\sqrt{2}-1$ | D. | $2-\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{2}$ | B. | 2 | C. | $\frac{3}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{10}}{10}$ | B. | $\frac{1}{5}$ | C. | $\frac{3\sqrt{10}}{10}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com