【題目】設(shè)函數(shù)

1)若函數(shù)上為減函數(shù),求實(shí)數(shù)的最小值;

2)若存在,使成立,求實(shí)數(shù)的取值范圍.

【答案】最小值為;(II

【解析】試題分析: 上為減函數(shù),等價(jià)于上恒成立,進(jìn)而轉(zhuǎn)化為,根據(jù)二次函數(shù)的性質(zhì)可得

命題“若存在, ,使成立”等價(jià)于

“當(dāng)時(shí),, 由易求,從而問(wèn)題等價(jià)于“當(dāng)時(shí),有,分 , 兩種情況討論:

當(dāng)是易求,當(dāng)時(shí)可求得的值域?yàn)?/span>,再按

兩種情況討論即可

解析:(1)由已知得,

上為減函數(shù),故上恒成立。

所以當(dāng)時(shí)。

故當(dāng)時(shí),即時(shí), .

所以,于是,故的最小值為.

2)命題“若存在, ,使成立”等價(jià)于

“當(dāng)時(shí),

由(1),當(dāng)時(shí), , .

問(wèn)題等價(jià)于:“當(dāng)時(shí),有”.

當(dāng),由(1),為減函數(shù),

,故.

當(dāng)時(shí),由于上的值域?yàn)?/span>

i,即, 恒成立,故上為增函數(shù),

于是, ,矛盾。

ii,即,由的單調(diào)性和值域知,

存在唯一,使,且滿足:

當(dāng)時(shí), 為減函數(shù);當(dāng)時(shí), , 為增函數(shù);

所以, ,

所以, ,與矛盾。

綜上得

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C的圓心C在x軸上,且圓C與直線 相切于點(diǎn)
(1)求n的值及圓C的方程;
(2)若圓M: 與圓C相切,求直線 截圓M所得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=
(1)判斷f(x)在(0,+∞)的單調(diào)性;
(2)若x>0,證明:(ex﹣1)ln(x+1)>x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司即將推車一款新型智能手機(jī),為了更好地對(duì)產(chǎn)品進(jìn)行宣傳,需預(yù)估市民購(gòu)買該款手機(jī)是否與年齡有關(guān),現(xiàn)隨機(jī)抽取了50名市民進(jìn)行購(gòu)買意愿的問(wèn)卷調(diào)查,若得分低于60分,說(shuō)明購(gòu)買意愿弱;若得分不低于60分,說(shuō)明購(gòu)買意愿強(qiáng),調(diào)查結(jié)果用莖葉圖表示如圖所示.

(1)根據(jù)莖葉圖中的數(shù)據(jù)完成列聯(lián)表,并判斷是否有95%的把握認(rèn)為市民是否購(gòu)買該款手機(jī)與年齡有關(guān)?

(2)從購(gòu)買意愿弱的市民中按年齡進(jìn)行分層抽樣,共抽取5人,從這5人中隨機(jī)抽取2人進(jìn)行采訪,求這2人都是年齡大于40歲的概率.

附: .

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點(diǎn),作EF⊥PB交PB于點(diǎn)F.

(1)證明PA∥平面EDB;
(2)證明PB⊥平面EFD;
(3)求二面角C﹣PB﹣D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在R上的函數(shù)f(x)滿足
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)g(x)的單調(diào)區(qū)間;
(3)如果s、t、r滿足|s﹣r|≤|t﹣r|,那么稱s比t更靠近r.當(dāng)a≥2且x≥1時(shí),試比較 和ex1+a哪個(gè)更靠近lnx,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x|f(x)=lg(x﹣1)+ },集合B={y|y=2x+a,x≤0}.
(1)若a= ,求A∪B;
(2)若A∩B=,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在( n的展開(kāi)式中,第6項(xiàng)為常數(shù)項(xiàng).
(1)求n;
(2)求含x2項(xiàng)的系數(shù);
(3)求展開(kāi)式中所有的有理項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)人有n把鑰匙,其中只有一把可以打開(kāi)房門,他隨意的進(jìn)行試開(kāi),若試開(kāi)過(guò)的鑰匙放在一邊,試開(kāi)次數(shù)X為隨機(jī)變量,則P(X=k)=( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案