已知M=[],α=[],試計(jì)算M20α.
【答案】分析:欲求M20α,先利用矩陣M的特征多次式求得其對(duì)應(yīng)的特征向量,由特征向量的性質(zhì)求得M20α,最后即可求得結(jié)果.
解答:解:矩陣M的特征多次式為f(λ)=(λ-1)2-4=0,λ1=3,λ2=-1,
對(duì)應(yīng)的特征向量分別為
而α=+2
∴M20α=320+2(-1)20=
點(diǎn)評(píng):本題主要考查矩陣變換的性質(zhì),考查由已知變換的點(diǎn)求未知的變換矩陣,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)某班50名學(xué)生在一次百米測(cè)試中,成績?nèi)慷冀橛?3秒到18秒之間,將測(cè)試結(jié)果按如下方式分成五組,第一組[13,14),第二組[14,15)…第五組[17,18]如圖是按上述分組方法得到的頻率分布直方圖.
(1)若成績大于等于14秒且小于16秒規(guī)定為良好,求該班在這次百米測(cè)試中成績?yōu)榱己玫娜藬?shù).
(2)設(shè)m,n表示該班兩個(gè)學(xué)生的百米測(cè)試成績,已知m,n∈[13,14)∪[17,18]求事件“|m-n|>2”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

9、已知m,l是兩條不同的直線,α、β是兩個(gè)不同的平面,給出下列命題:①若l⊥α,m∥α,則l⊥m;②若m∥l,m?α,則l∥α;③若α⊥β,m?α,l?β,則m⊥l;④若m⊥l,m?α,l?β,則α⊥β其中正確命題的個(gè)數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知M={x∈R|x≥2
2
}
,a=π,則下列四個(gè)式子①a∈M;②a?M;③a⊆M;④a∩M=π,其中正確的是( 。
A、①②B、①④C、②③D、①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知M={x||x-2|<1},P={x|y=
x-1
+
3-x
}
,則M∩P=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知m=(x-lnx-y,a),
n
=(
1
x
+lnx+15,1),其中a>0,且a≠1,當(dāng)時(shí),y關(guān)于x的函數(shù)關(guān)系式記為y=f(x);
(1)寫出函數(shù)f(x)的解析式,并討論f(x)的單調(diào)性;
(2)設(shè)函數(shù)g(x)=
(-2x3-3ax2-6ax-4a2+6a)   ex,x≤1
e•f(x),x>
1
(e是自然數(shù)的底數(shù)).是否存在正整數(shù)a,使g(x)在[-a,a]上為減函數(shù)?若存在,求出所有滿足條件的正整數(shù)a;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案