A. | ($\frac{π}{24}$,0) | B. | ($\frac{5π}{24}$,0) | C. | ($\frac{11π}{24}$,0) | D. | ($\frac{11π}{12}$,0) |
分析 根據(jù)函數(shù)圖象平移公式,所得圖象對(duì)應(yīng)函數(shù)為y=cos(2x+$\frac{7π}{12}$),再由三角函數(shù)圖象對(duì)稱中心的公式解關(guān)于x的方程,即可得到所得圖象的一個(gè)對(duì)稱中心.
解答 解:∵y=cos(2x+$\frac{π}{4}$),
∴圖象向左平移$\frac{π}{6}$個(gè)單位,得y=cos[2(x+$\frac{π}{6}$)+$\frac{π}{4}$]=cos(2x+$\frac{7π}{12}$)的圖象,
令2x+$\frac{7π}{12}$=kπ+$\frac{π}{2}$,k∈Z,得x=$\frac{kπ}{2}$-$\frac{π}{24}$,k∈Z,
取k=1,得x=$\frac{11π}{24}$,
∴所得圖象的一個(gè)對(duì)稱中心是($\frac{11π}{24}$,0).
故選:C.
點(diǎn)評(píng) 本題給出三角函數(shù)圖象的平移,求所得圖象的一個(gè)對(duì)稱中心,著重考查了三角函數(shù)的圖象與變換、函數(shù)圖象對(duì)稱中心公式等知識(shí),屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(-1,\frac{1}{4})$ | B. | $({-∞,-1})∪(\frac{1}{4},+∞)$ | C. | $({-∞,-1}]∪[\frac{1}{4},+∞)$ | D. | $[-1,\frac{1}{4}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{3}{4}$ | B. | $\frac{3}{4}$ | C. | -3 | D. | 3 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com