如圖放置的邊長為1的正方形PABC沿x軸滾動(dòng),點(diǎn)B恰好經(jīng)過原點(diǎn).設(shè)頂點(diǎn)P(x,y)的軌跡方程是y=f(x),則對(duì)函數(shù)y=f(x)有下列判斷:
①函數(shù)y=f(x)是偶函數(shù);
②對(duì)任意的x∈R,都有f(x+2)=f(x-2);
③函數(shù)y=f(x)在區(qū)間[2,3]上單調(diào)遞減;
2
0
f(x)dx=
π+1
2

其中判斷正確的序號(hào)是
 
考點(diǎn):函數(shù)解析式的求解及常用方法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)正方形的運(yùn)動(dòng),得到點(diǎn)P的軌跡方程,然后根據(jù)函數(shù)的圖象和性質(zhì)分別進(jìn)行判斷即可.
解答: 解:當(dāng)-2≤x≤-1,P的軌跡是以A為圓心,半徑為1的
1
4
圓,
當(dāng)-1≤x≤1時(shí),P的軌跡是以B為圓心,半徑為
2
1
4
圓,
當(dāng)1≤x≤2時(shí),P的軌跡是以C為圓心,半徑為1的
1
4
圓,
當(dāng)3≤x≤4時(shí),P的軌跡是以A為圓心,半徑為1的
1
4
圓,
∴函數(shù)的周期是4.
因此最終構(gòu)成圖象如下:
①根據(jù)圖象的對(duì)稱性可知函數(shù)y=f(x)是偶函數(shù),∴①正確.
②由圖象即分析可知函數(shù)的周期是4.∴②正確.
③函數(shù)y=f(x)在區(qū)間[2,3]上單調(diào)遞增,∴③錯(cuò)誤.
④根據(jù)積分的幾何意義可知
2
0
 f(x)dx
=
1
8
×π×(
2
)2+
1
2
×1×1+
1
4
π×12
=
π
2
+
1
2
,∴④正確.
故答案為:①②④.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是函數(shù)圖象的變化,其中根據(jù)已知畫出正方形轉(zhuǎn)動(dòng)過程中的一個(gè)周期內(nèi)的圖象,利用數(shù)形結(jié)合的思想對(duì)本題進(jìn)行分析是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)M為拋物線C:x2=4py(p>0)準(zhǔn)線上的任意一點(diǎn),過點(diǎn)M作曲線C的兩條切線,設(shè)切點(diǎn)為A、B.
(Ⅰ)直線AB是否過定點(diǎn)?如果是,求出該定點(diǎn),如果不是,請(qǐng)說明理由;
(Ⅱ)當(dāng)直線MA,MF,MB的斜率均存在時(shí),求證:直線MA,MF,MB的斜率的倒數(shù)成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且a2=8,S4=40.?dāng)?shù)列{bn}的前n項(xiàng)和為Tn,且Tn-2bn+3=0,n∈N*
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)cn=
an,n為奇數(shù)
bn,n為偶數(shù)
,求數(shù)列{cn}的前2n+1項(xiàng)和P2n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)z=1-i(i為虛數(shù)單位)則
4
z
+z2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若角α的終邊過點(diǎn)(1,2),則sin(π+α)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若曲線f(x)=ax2-lnx存在垂直于y軸的切線,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某錐體的三視圖(單位:cm)如圖所示,則該錐體的體積為
 
cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,第一象限有系列圓On(n∈N*),所有圓均與x軸和直線
3
x-y=0相切,且任何相鄰兩圓外切:圓On的半徑為rn,其中rn>rn+1>0,若圓O1的半徑為r1=1,則rn等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若變量x,y滿足約束條件
x+y≤8
2y-x≤4
x≥0
y≥0
且z=4y-x的最大值為a,最小值為b,則a+b的值是(  )
A、4B、20C、10D、12

查看答案和解析>>

同步練習(xí)冊(cè)答案