已知等差數(shù)列{an}的前n項和為Sn,且a2=8,S4=40.?dāng)?shù)列{bn}的前n項和為Tn,且Tn-2bn+3=0,n∈N*
(Ⅰ)求數(shù)列{an},{bn}的通項公式;
(Ⅱ)設(shè)cn=
an,n為奇數(shù)
bn,n為偶數(shù)
,求數(shù)列{cn}的前2n+1項和P2n+1
考點:數(shù)列的求和
專題:計算題,等差數(shù)列與等比數(shù)列
分析:(Ⅰ)運用等差數(shù)列的通項公式與求和公式,根據(jù)條件列方程,求出首項和公差,得到通項an,運用n=1時,b1=T1,n>1時,bn=Tn-Tn-1,求出bn;
(Ⅱ)寫出cn,然后運用分組求和,一組為等差數(shù)列,一組為等比數(shù)列,分別應(yīng)用求和公式化簡即可.
解答: 解:(Ⅰ)設(shè)等差數(shù)列{an}的公差為d,
由題意,得
a1+d=8
4a1+6d=40
,解得
a1=4
d=4
,
∴an=4n;
∵Tn-2bn+3=0,∴當(dāng)n≥2時,Tn-1-2bn-1+3=0,
兩式相減,得bn=2bn-1,(n≥2)
又當(dāng)n=1時,b1=3,
則數(shù)列{bn}為等比數(shù)列,
bn=3•2n-1;                  
(Ⅱ)cn=
4n      n為奇數(shù)
3•2n-1  n為偶數(shù)

∴P2n+1=(a1+a3+…+a2n+1)+(b2+b4+…+b2n
=
4+4(2n+1)
2
•(n+1)+
6(1-4n)
1-4

=22n+1+4n2+8n+2.
點評:本題主要考查等差數(shù)列和等比數(shù)列的通項與前n項和公式,考查方程在數(shù)列中的運用,考查數(shù)列的求和方法:分組求和,必須掌握.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線的頂點為(0,0),準(zhǔn)線為x=-2,不垂直于x軸的直線x=ty+1與該拋物線交于A,B兩點,圓M以AB為直徑.
(Ⅰ)求拋物線的方程;
(Ⅱ)圓M交x軸的負半軸于點C,是否存在實數(shù)t,使得△ABC的內(nèi)切圓的圓心在x軸上?若存在,求出t的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
1
2
,以原點為圓心、橢圓的短半軸長為半徑的圓與直線x-y+2
6
=0相切.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)A(-4,0),過點R(3,0)作與x軸不重合的直線l交橢圓于P,Q兩點,連結(jié)AP,AQ分別交直線x=
16
3
于M,N兩點,試探究直線MR、NR的斜率之積是否為定值,若為定值,請求出;若不為定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在一次招聘考試中,有12道備選題,其中8道A類題,4道B類題,每位考生都要在其中隨機抽出3道題回答
(Ⅰ)求某考生至少抽到1道B類題的概率;
(Ⅱ)已知所抽出的3道題中有2道A類題,1道B類題,設(shè)該考生答對每道A類題的概率都是
3
5
,答對每道B類題的概率都是
4
5
,且各題答對與否相互獨立,用X表示該考生答對題的個數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

小明打算從A組和B組兩組花樣滑冰動作中選擇一組參加比賽.已知小明選擇A組動作的概率是選擇B組動作的概率的3倍,若小明選擇A組動作并正常發(fā)揮可獲得10分,沒有正常發(fā)揮只能獲得6分;若小明選擇B組動作則一定能正常發(fā)揮并獲得8分.據(jù)平時訓(xùn)練成績統(tǒng)計,小明能正常發(fā)揮A組動作的概率是0.8.
(Ⅰ)求小明選擇A組動作的概率;
(Ⅱ)設(shè)ξ表示小明比賽時獲得的分數(shù),求ξ的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若S1=
3
2
1
x
dx,S2=
π
0
cos
x
2
dx,則S1、S2的大小關(guān)系為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x),g(x)都是單調(diào)函數(shù),有如下四個命題:
①若f(x)單調(diào)遞增,g(x)單調(diào)遞增,則f(x)-g(x)單調(diào)遞增;
②若f(x)單調(diào)遞增,g(x)單調(diào)遞減,則f(x)-g(x)單調(diào)遞增;
③若f(x)單調(diào)遞減,g(x)單調(diào)遞增,則f(x)-g(x)單調(diào)遞減;
④若f(x)單調(diào)遞減,g(x)單調(diào)遞減,則f(x)-g(x)單調(diào)遞減;
其中,正確的命題是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖放置的邊長為1的正方形PABC沿x軸滾動,點B恰好經(jīng)過原點.設(shè)頂點P(x,y)的軌跡方程是y=f(x),則對函數(shù)y=f(x)有下列判斷:
①函數(shù)y=f(x)是偶函數(shù);
②對任意的x∈R,都有f(x+2)=f(x-2);
③函數(shù)y=f(x)在區(qū)間[2,3]上單調(diào)遞減;
2
0
f(x)dx=
π+1
2

其中判斷正確的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線l1:ax+(3-a)y+1=0,l2:2x-y=0,若l1⊥l2,則實數(shù)a的值為
 

查看答案和解析>>

同步練習(xí)冊答案