設(shè)函數(shù)f(x)=ex+sinx,g(x)=x.
(1)已知點(diǎn)P(x1,f(x1)),Q(x2,f(x2))(x1≥0,x2≥0),若直線PQ平行于x軸,求P,Q兩點(diǎn)間的最短距離;
(2)若x≥0時,f(x)-f(-x)≥a(g(x)-g(-x))恒成立,求實(shí)數(shù)a的取值范圍.
考點(diǎn):利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)根據(jù)題意可知f(x1)=g(x2),令h(x)=ex+sinx-x(x≥0),求出其導(dǎo)函數(shù),進(jìn)而求得h(x)的最小值即為P、Q兩點(diǎn)間的最短距離.
(2)由已知得x≥0時,ex-
1
ex
+2sinx≥2ax恒成立,設(shè)t(x)=ex-
1
ex
+2sinx,由導(dǎo)數(shù)性質(zhì)得t(x)min=t(0)=0,從而(2ax)max=0,由此能求出實(shí)數(shù)a的取值范圍.
解答: 解:(1)∵點(diǎn)P(x1,f(x1)),Q(x2,f(x2))(x1≥0,x2≥0),
直線PQ平行于x軸,
∴f(x1)=g(x2),∴ex1+sinx1=x2
∴P,Q兩點(diǎn)間的距離等于|x2-x1|=|ex1+sinx1-x1|,
設(shè)h(x)=ex+sinx-x(x≥0),則h'(x)=ex+cosx-1(x≥0),
記l(x)=h'(x)=ex+cosx-1(x≥0),則l'(x)=ex-sinx≥1-sinx≥0,
∴h'(x)≥h'(0)=1>0,
∴h(x)在[0,+∞)上單調(diào)遞增,∴h(x)≥h(0)=1,
∴|x2-x1|≥1,即P,Q兩點(diǎn)間的最短距離等于1.
(2)∵x≥0時,f(x)-f(-x)≥a(g(x)-g(-x))恒成立,
∴x≥0時,ex-
1
ex
+2sinx≥2ax恒成立,
設(shè)t(x)=ex-
1
ex
+2sinx,
t(x)=ex+
1
ex
+2cosx
>0,
∴t(x)是增函數(shù),∴t(x)min=t(0)=0,
∵x≥0時,ex-
1
ex
+2sinx≥2ax恒成立,
∴(2ax)max=0,∴a≤0.
點(diǎn)評:本題主要考查了利用函數(shù)的導(dǎo)數(shù)求出函數(shù)的單調(diào)性以及函數(shù)的極值問題,考查學(xué)生分析解決問題的能力,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的能力,函數(shù)恒成立時條件的應(yīng)用能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax3+bx2+cx+d為奇函數(shù),且在x=-1處取得極大值2.
(Ⅰ)求f(x)解析式;
(Ⅱ)過點(diǎn)A(1,t)(t≠-2)可作函數(shù)f(x)象的三條切線,求實(shí)數(shù)t的取值范圍;
(Ⅲ)若f(x)+(m+2)x≤x2(ex-1)對于任意的x∈[0,+∞)恒成立,求實(shí)數(shù)m取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
x
+alnx,其中a∈R,
(Ⅰ)若函數(shù)f(x)在x=1處取得極值,求實(shí)數(shù)a的值,
(Ⅱ)在(1)的結(jié)論下,若關(guān)于x的不等式f(x+1)>
x2+(t+2)x+t+2
x2+3x+2
(t∈N*),當(dāng)x≥1時恒成立,求t的值;
(Ⅲ)令g(x)=x-f(x),若關(guān)于x的方程g(x)+g(3-x)=0在(0,1)內(nèi)至少有兩個解,求出實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ln(x+1)+mx,當(dāng)x=0時,函數(shù)f(x)取得極大值.
(Ⅰ)求實(shí)數(shù)m的值;
(Ⅱ)已知結(jié)論:若函數(shù)f(x)=ln(x+1)+mx在區(qū)間(a,b)內(nèi)導(dǎo)數(shù)都存在,且a>-1,則存在x0∈(a,b),使得f′(x0)=
f(b)-f(a)
b-a
,試用這個結(jié)論證明:若-1<x1<x2,函數(shù)g(x)=
f(x1)-f(x2)
x1-x2
(x-x1)+f(x1),則對任意x∈(x1+x2),都有f(x)>g(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=2cos(3π-
x
2
)cos(
π
2
-
x
2
)+sin2(π+
x
2
)-cos2(π+
x
2

(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)若g(x)=f(
π
12
-x),求不等式g(x)<1的解集;
(3)若不等式|f(x)-a|<2當(dāng)x∈[0,π]時恒成立,試確定a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
x2-x+2alnx有兩個極值點(diǎn)x1,x2且x1<x2
(Ⅰ)求實(shí)數(shù)a的取值范圍,并寫出函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)判斷方程:f(x)=(a+1)x根的個數(shù)并說明理由;
(Ⅲ)利用消元法表示出函數(shù)f(x2),利用導(dǎo)數(shù)研究函數(shù)f(x2)的單調(diào)性,即可證明不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax3lnx+bx3+c在x=1處取得極值4+c.
(1)求a,b的值;
(2)若f(x)≤3c2對?x∈(0,+∞)恒成立,求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(cosx,cosx),
b
=(sinx,-cosx),設(shè)函數(shù)f(x)=2
a
b
+1
(Ⅰ)求函數(shù) f(x)最的小正周期;
(Ⅱ)求函數(shù)f(x)在區(qū)間[
π
8
,
4
]上的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}中,已知a2+a7=9,則3a4+a6=
 

查看答案和解析>>

同步練習(xí)冊答案