若∫4|x-1|dx=,則a的值為   
【答案】分析:根據(jù)題意利用分類討論的方法去掉絕對值符號,再找出被積函數(shù)的原函數(shù),計算在區(qū)間(0,4)上的定積分即可.
解答:解:∵∫4|x-1|dx=∫14(x-1)dx+∫1(1-x)dx
=()|14-()|1dx=,
則a的值為=+1.
故答案為:+1.
點評:本題考查定積分的基本運算,關(guān)鍵是找出被積函數(shù)的原函數(shù),本題屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若二項式(a
x
-
1
x
)6
的展開式中的常數(shù)項為-160,則
a
0
(3x2-1)dx
=
 

(文科)下表是某廠1~4月份用水量(單位:百噸)的一組數(shù)據(jù),
月  份x 1 2 3 4
用水量y 4.5 4 3 2.5
由其散點圖可知,用水量y與月份x之間有較好的線性相關(guān)關(guān)系,其線性回歸方程
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=(1+mx)2013=a0+a1x+a2x2+…+a2013x2013(x∈R)
(1)若m=
2
π
1
-1
(sinx+
1-x2
)dx
,求m、a0及a1的值;
(2)若離散型隨機變量X~B(4,
1
2
)且m=EX時,令bn=(-1)nnan,求數(shù)列{bn}的前2013項的和T2013

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出以下命題:
(1)若
b
a
f(x)dx>0
,則f(x)>0; 
(2)
0
|sinx|dx=4
;
(3)f(x)的原函數(shù)為F(x),且F(x)是以T為周期的函數(shù),則
a
0
f(x)dx=
a+T
T
f(x)dx

其中正確命題的個數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列五個命題中正確命題的個數(shù)是( 。
(1)對于命題P:?x∈R,使得x2+x+1<0,則¬P:?x∈R,均有x2+x+1>0;
(2)m=3是直線(m+3)x+my-2=0與直線mx-6y+5=0互相垂直的充要條件;
(3)已知回歸直線的斜率的估計值為1.23,樣本點的中心為(4,5),則回歸直線方程為
y
=1.23x+0.08;
(4)若實數(shù)x,y∈[-1,1],則滿足x2+y2≥1的概率為
π
4
;
(5)曲線y=x2與y=x所圍成圖形的面積是S=∫
 
1
0
(x-x2)dx.

查看答案和解析>>

同步練習(xí)冊答案