【題目】已知橢圓,上頂點(diǎn)為,焦點(diǎn)為,點(diǎn)是橢圓上異于點(diǎn)的不同的兩點(diǎn)且滿足直線與直線斜率之積為.

1為橢圓上不同于長(zhǎng)軸端點(diǎn)的任意一點(diǎn),面積的最大值;

2)試判斷直線是否過定點(diǎn);若是,求出定點(diǎn)坐標(biāo);若否,請(qǐng)說明理由.

【答案】12.

【解析】試題分析:1設(shè),即可得解;

(2)由題意, ,直線的斜率不為0,設(shè)直線的方程為 , ,由直線與橢圓聯(lián)立得,由直線與直線斜率之積為,利用坐標(biāo)表示得,解得,進(jìn)而可得解.

試題解析:

(1)設(shè),.

面積的最大值為.

(2)由題意, ,直線的斜率不為0,設(shè)直線的方程為

設(shè), ,,

,

∵直線與直線斜率之積為

,

將②式代入,化簡(jiǎn)得解得

(若設(shè)直線的斜截式方程,此處可直接求出直線的縱截距為2或

當(dāng)時(shí),直線的方程為 過定點(diǎn),不符合題意

當(dāng)時(shí),直線的方程為 ,過定點(diǎn)代入①式,

解得

∴直線過定點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)Sn=(﹣1)n ,若存在正整數(shù)n,使得(an1﹣p)(an﹣p)<0成立,則實(shí)數(shù)p的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=﹣ x3+ x2﹣2x(a∈R)
(1)當(dāng)a=3時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若對(duì)于任意x∈[1,+∞)都有f′(x)<2(a﹣1)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】10四面體ABCD及其三視圖如圖所示,平行于棱ADBC的平面分別交四面體的棱AB,BDDC,CA于點(diǎn)EFG,H

1求四面體ABCD的體積;

2證明四邊形EFGH是矩形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知?jiǎng)訄A過定點(diǎn) ,且與定直線相切,動(dòng)圓圓心的軌跡方程為,直線過點(diǎn)交曲線兩點(diǎn).

1)若軸于點(diǎn)的取值范圍;

(2)若的傾斜角為,上是否存在點(diǎn)使為正三角形?若能,求點(diǎn)的坐標(biāo);若不能,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ( e為自然對(duì)數(shù)的底數(shù)),且f(3a﹣2)>f(a﹣1),則實(shí)數(shù)a的取值范圍為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l的方程為ρsin(θ+ )= ,圓C的方程為 (θ為參數(shù)).
(1)把直線l和圓C的方程化為普通方程;
(2)求圓C上的點(diǎn)到直線l距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】活水圍網(wǎng)養(yǎng)魚技術(shù)具有養(yǎng)殖密度高、經(jīng)濟(jì)效益好的特點(diǎn).研究表明:活水圍網(wǎng)養(yǎng)魚時(shí),某種魚在一定的條件下,每尾魚的平均生長(zhǎng)速度(單位:千克/年)是養(yǎng)殖密度(單位:尾/立方米)的函數(shù).當(dāng)不超過/立方米時(shí), 的值為千克/年;當(dāng)時(shí), 的一次函數(shù),且當(dāng)時(shí),

)當(dāng)時(shí),求關(guān)于的函數(shù)的表達(dá)式.

)當(dāng)養(yǎng)殖密度為多大時(shí),每立方米的魚的年生長(zhǎng)量(單位:千克/立方米)可以達(dá)到最大?并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , Sn=n2+2n,bn=anan+1cos(n+1)π,數(shù)列{bn} 的前n項(xiàng)和為Tn , 若Tn≥tn2對(duì)n∈N*恒成立,則實(shí)數(shù)t的取值范圍是

查看答案和解析>>

同步練習(xí)冊(cè)答案