2.如圖,正三棱柱ABC-A1B1C1的所有棱長(zhǎng)均為2,D,E分別是BB1和AB的中點(diǎn).
(1)證明:AD⊥平面A1EC;
(2)求點(diǎn)B1到平面A1EC的距離.

分析 (1)以E為原點(diǎn),EB為x軸,EC為y軸,過(guò)E作平面ABC的垂線為z軸,建立空間直角坐標(biāo)系,利用向量法能證明AD⊥平面A1EC.
(2)求出$\overrightarrow{E{B}_{1}}$=(1,0,2),平面A1EC的法向量$\overrightarrow{AD}$=(2,0,1),利用向量法能求出點(diǎn)B1到平面A1EC的距離.

解答 證明:(1)以E為原點(diǎn),EB為x軸,EC為y軸,
過(guò)E作平面ABC的垂線為z軸,建立空間直角坐標(biāo)系,
則A(-1,0,0),D(1,0,1),A1(-1,0,2),
E(0,0,0),C(0,$\sqrt{3}$,0),
$\overrightarrow{AD}$=(2,0,1),$\overrightarrow{E{A}_{1}}$=(-1,0,2),$\overrightarrow{EC}$=(0,$\sqrt{3}$,0),
∵$\overrightarrow{AD}•\overrightarrow{E{A}_{1}}=-2+2=0$,$\overrightarrow{AD}•\overrightarrow{EC}$=0,
∴AD⊥EA1,AD⊥EC,
∵EA1∩EC=E,∴AD⊥平面A1EC.
解:(2)B1(1,0,2),$\overrightarrow{E{B}_{1}}$=(1,0,2),
∵AD⊥平面A1EC,
∴平面A1EC的法向量$\overrightarrow{AD}$=(2,0,1),
∴點(diǎn)B1到平面A1EC的距離d=$\frac{|\overrightarrow{E{B}_{1}}•\overrightarrow{AD}|}{|\overrightarrow{AD}|}$=$\frac{4}{\sqrt{5}}=\frac{4\sqrt{5}}{5}$.

點(diǎn)評(píng) 本題考查線面垂直的證明,考查點(diǎn)到平面的距離的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$與雙曲線$\frac{x^2}{4}-\frac{y^2}{2}=1$有相同的焦點(diǎn),且橢圓C過(guò)點(diǎn)P(2,1),若直線l與直線OP平行且與橢圓C相交于點(diǎn)A,B.
(Ⅰ) 求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ) 求三角形OAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知橢圓E的中心在原點(diǎn),焦點(diǎn)F1、F2在x軸上,離心率為$\frac{1}{2}$,在橢圓E上有一動(dòng)點(diǎn)A與F1、F2的距離之和為4,
(Ⅰ) 求橢圓E的方程;
(Ⅱ) 過(guò)A、F1作一個(gè)平行四邊形,使頂點(diǎn)A、B、C、D都在橢圓E上,如圖所示.判斷四邊形ABCD能否為菱形,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.命題p:?x<0,x2≥2x,則命題¬p為(  )
A.?x0<0,x${\;}_{0}^{2}$≥2${\;}^{{x}_{0}}$B.?x0≥0,x${\;}_{0}^{2}$≥2${\;}^{{x}_{0}}$
C.?x0<0,x${\;}_{0}^{2}$<2${\;}^{{x}_{0}}$D.?x0≥0,x${\;}_{0}^{2}$≥2${\;}^{{x}_{0}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知定義在R上的函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),對(duì)任意x∈R滿足f(x)+f′(x)<0,則下列結(jié)論正確的是( 。
A.e2f(2)>e3f(3)B.e2f(2)<e3f(3)C.e2f(2)≥e3f(3)D.e2f(2)≤e3f(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知數(shù)列{an)中,a1=2,an=1-$\frac{1}{{a}_{n-1}}$(n≥2),則a2017等于( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.如圖所示,使用模擬方法估計(jì)圓周率值的程序框閏,P表示估計(jì)的結(jié)果,剛圖中空白框內(nèi)應(yīng)填入P=( 。
A.$\frac{M}{2017}$B.$\frac{2017}{M}$C.$\frac{4M}{2017}$D.$\frac{2017}{4M}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.函數(shù)f(x)=($\frac{1}{2}$)x-x2的大致圖象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=|x-1|.
(Ⅰ)解不等式f(x)≥1;
(Ⅱ)存在實(shí)數(shù)x,使不等式f(x)+|x+2|-m≤0有解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案