6.若點A($\sqrt{3}$,1)的直線l1:$\sqrt{3}$x+ay-2=0與過點B($\sqrt{3}$,4)的直線l2交于點C,若△ABC是以AB為底邊的等腰三角形,則l2的方程為( 。
A.$\sqrt{3}$x+y-7=0B.$\sqrt{3}$x-y+7=0C.x+$\sqrt{3}$y-7=0D.x-$\sqrt{3}$y-7=0

分析 把點A代入直線l1求出a的值,求出直線l1的斜率,再根據(jù)等腰三角形的性質(zhì)可得l2的斜率,根據(jù)點斜式求出直線方程即可

解答 解:過點的直線點A($\sqrt{3}$,1)
∴3+a-2=0,解得a=-1;
∴直線l1的斜率為$\sqrt{3}$;
∵△ABC是以AB為底邊的等腰三角形,
∴直線l2的斜率為-$\sqrt{3}$;
∴直線方程為y-4=-$\sqrt{3}$(x-$\sqrt{3}$),
化為一般式:$\sqrt{3}$x+y-7=0.
故選:A.

點評 本題考查了直線方程的應(yīng)用問題,也考查了數(shù)形結(jié)合的思想方法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若命題“對任意$x∈[{-\frac{π}{3},\frac{π}{4}}]$,tanx<m恒成立”是假命題,則實數(shù)m的取值范圍是m≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知直線l1:2x-3y+1=0,直線l2過點(1,-1)且與直線l1平行.
(1)求直線l2的方程;
(2)求直線l2與兩坐標(biāo)軸圍成的三角形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=|x-a|+|2x-a|(a∈R).
(1)若f(1)<11,求a的取值范圍;
(2)若?a∈R,f(x)≥x2-x-3恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在四邊形ABCD中,∠BAD=90°,AD∥BC,PE⊥平面ABCD,E在AD上,F(xiàn)D∥PE,BC=AE=PE,DE=DF=$\frac{1}{2}$BC.
(Ⅰ)求證:AB⊥EF;
(Ⅱ)求證:CF∥平面PAB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若雙曲線$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{m}$=1的離心率為$\sqrt{m}$,則此雙曲線的漸近線方程為( 。
A.y=±$\frac{\sqrt{2}}{2}$xB.y=±$\frac{\sqrt{3}}{3}$xC.y=±$\frac{1}{2}$xD.y=±$\frac{1}{3}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)f(x)是定義在R上的偶函數(shù),對任意x∈R,都有f(x)=f(x+4),且當(dāng)x∈[-2,0]時,$f(x)={(\frac{1}{2})^x}-1$,若在區(qū)間(-2,6]內(nèi)關(guān)于x的方程f(x)-loga(x+2)=0(a>1)恰有三個不同的實數(shù)根,則a的取值范圍為( 。
A.(1,2)B.(2,+∞)C.(1,$\root{3}{4}$)D.($\root{3}{4}$,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=$\frac{1}{2}$mcos2x+(m-2)sinx,其中1≤m≤2,若函數(shù)f(x)的最大值記為g(m),則g(m)的最小值為(  )
A.-$\frac{1}{4}$B.1C.3-$\sqrt{3}$D.$\sqrt{3}$-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知四邊形ABCD中,AB=2,AD=4,BC=6,CD=2,3$\overrightarrow{AB}$•$\overrightarrow{AD}$+2$\overrightarrow{CB}$•$\overrightarrow{CD}$=0,則四邊形ABCD的面積為5$\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊答案