2.從某批產(chǎn)品中,有放回地抽取產(chǎn)品兩次,每次隨機(jī)抽取1件,假設(shè)事件A:“取出的2件產(chǎn)品中至多有1件是二等品”的概率P(A)=0.96.
(Ⅰ)求從該批產(chǎn)品中任取1件是二等品的概率p;
(Ⅱ)若該批產(chǎn)品共20件,從中任意抽取2件,X表示取出的2件產(chǎn)品中二等品的件數(shù),求X的分布列與期望.

分析 (Ⅰ)設(shè)該批產(chǎn)品中任取1件是二等品為事件B,根據(jù)事件A的概率求得事件B的概率即可.
(Ⅱ)利用超幾何分布求得隨機(jī)變量的概率,并求得X的分布列.

解答 解:(Ⅰ)∵事件A:“取出的2件產(chǎn)品中至多有1件是二等品”,設(shè)事件B:“該批產(chǎn)品中任取1件是二等品”
∴P(B)=1-p2=0.96
求得p=0.2.
(Ⅱ)∵該批產(chǎn)品共20件,由(Ⅰ)知其二等品有20×0.2=4件,
顯然X=0,1,2.故$P(X=0)=\frac{{C_{16}^2}}{{C_{20}^2}}=\frac{12}{19}$.$P(X=1)=\frac{{C_{16}^1C_4^1}}{{C_{20}^2}}=\frac{32}{95}$.$P(X=2)=\frac{C_4^2}{{C_{20}^2}}=\frac{3}{95}$.
所以X的分布列為

X012
P$\frac{12}{19}$$\frac{32}{95}$$\frac{3}{95}$
∴EX=$0×\frac{12}{19}+1×\frac{32}{95}+2×\frac{3}{95}$=$\frac{38}{95}$

點評 本題主要考查隨機(jī)變量的概率分布列,以及超幾何分布的概率求法,屬于中檔題型.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若不等式ax2+bx+c>0的解集為{x|-1<x<2},則不等式$\frac{2a+b}{x}$>bx的解集為(-∞,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=x2-2|x+a|+3a(a∈R).
(1)若函數(shù)f(x)的圖象關(guān)于y軸對稱,求實數(shù)a的值;
(2)設(shè)a=-$\frac{1}{4}$,求f(x)的單調(diào)增區(qū)間;
(3)設(shè)函數(shù)g(x)=2x,若對任意x1≤0,存在x2∈[-3,+∞],有f(x1)≥g(x2)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列四種說法中,正確的個數(shù)有
①命題“?x∈R,均有x2-3x-2≥0”的否定是:“?x∈R,使得x2-3x-2≤0”
②“命題p∨q為真”是“命題p∧q為真”的必要不充分條件;
③?m∈R,使f(x)=mx${\;}^{{m}^{2}+2m}$是冪函數(shù),且在(0,+∞)上是單調(diào)遞增
④若數(shù)據(jù)x1,x2,x3,…,xn的方差為1,則2x1,2x2,2x3,..2xn的方差為2( 。
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.展開(a+b+c)10合并同類項后的項數(shù)是( 。
A.11B.66C.76D.134

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.如圖所示的程序運行后輸出的結(jié)果是60.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)y=log${\;}_{\frac{1}{2}}$(x2-ax+a)在($\sqrt{2}$,+∞)上是減函數(shù),則a的取值范圍是( 。
A.[2$\sqrt{2}$,4)B.[2$\sqrt{2}$,$\sqrt{2}$+2]C.(-∞,2$\sqrt{2}$]D.[2$\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在等比數(shù)列{an}中,a1=8,a4=a3•a5,則此數(shù)列前n項和為Sn=16(1-$\frac{1}{{2}^{n}}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=2ax3-3x2+1,若 f(x)存在唯一的零點x0,且x0>0,則a的取值范圍是( 。
A.(1,+∞)B.(0,1)C.(-1,0)D.(-∞,-1)

查看答案和解析>>

同步練習(xí)冊答案