點P、Q在橢圓+= 1上運(yùn)動,定點C的坐標(biāo)為 ( 0,3 ),且+ λ= 0,則λ的取值范圍是      。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知橢圓中心在原點,F(xiàn)是焦點,A為頂點,準(zhǔn)線l交x軸于點B,點P,Q在橢圓上,且PD⊥l于D,QF⊥AO,則①
|PF|
|PD|
;②
|QF|
|BF|
;③
|AO|
|BO|
;④
|AF|
|AB|
;⑤
|FO|
|AO|
,其中比值為橢圓的離心率的有(  )
A、1個B、3個C、4個D、5個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知橢圓中心在原點,F(xiàn)是焦點,A為頂點,準(zhǔn)線l(橢圓上的點到焦點的距離與到準(zhǔn)線的距離之比等于離心率)交x軸于點B,點P,Q在橢圓上,且PD⊥l于D,QF⊥AO,則①
|PF|
|PD|
;②
|QF|
|BF|
;③
|FO|
|AO|
;④
|AF|
|AB|
,其中比值為橢圓的離心率的有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•閔行區(qū)二模)已知橢圓方程為
x2
a2
+
y2
b2
=1(a>b>0)
,長軸兩端點為A、B,短軸上端點為C.
(1)若橢圓焦點坐標(biāo)為F1(2
2
,0)、F2(-2
2
,0)
,點M在橢圓上運(yùn)動,當(dāng)△ABM的最大面積為3時,求其橢圓方程;
(2)對于(1)中的橢圓方程,作以C為直角頂點的內(nèi)接于橢圓的等腰直角三角形CDE,設(shè)直線CE的斜率為k(k<0),試求k滿足的關(guān)系等式;
(3)過C任作
CP
垂直于
CQ
,點P、Q在橢圓上,試問在y軸上是否存在一點T使得直線TP的斜率與TQ的斜率之積為定值,如果存在,找出點T的坐標(biāo)和定值,如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知橢圓中心在原點,F(xiàn)是焦點,A為頂點,準(zhǔn)線l交x軸于點B,點P,Q在橢圓上,且PD⊥l于D,QF⊥AO,則橢圓的離心率是①
|PF|
|PD|
;②
|QF|
|BF|
;③
|AO|
|BO|
;④
|AF|
|AB|
;⑤
|FO|
|AO|
,其中正確的是
①②③④⑤
①②③④⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓中心在原點,A為右頂點,F是右焦點,對應(yīng)準(zhǔn)線l交x軸于點B,點P、Q在橢圓上,有PD⊥l于D,QF⊥AO,則橢圓的離心率是:①;②;③;④;⑤.其中正確的序號是_____________.

查看答案和解析>>

同步練習(xí)冊答案