18.已知直線ax+y+2=0的傾斜角為$\frac{3}{4}$π,則該直線的縱截距等于( 。
A.1B.-1C.2D.-2

分析 直線ax+y+2=0的傾斜角為$\frac{3}{4}$π,可得$tan\frac{3π}{4}$=-a,解得a.再利用斜截式即可得出.

解答 解:∵直線ax+y+2=0的傾斜角為$\frac{3}{4}$π,
∴$tan\frac{3π}{4}$=-a,解得a=1.
∴直線化為:y=-x-2,
∴該直線的縱截距等于-2.
故選:D.

點(diǎn)評 本題考查了直線的傾斜角與斜率之間的關(guān)系、斜截式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在四棱錐A-BCDE中,底面BCDE為平行四邊形,且△ABE是以∠BAE為直角的等腰直角三角形,O為BE中點(diǎn),且CO⊥CD,CO=$\frac{\sqrt{2}}{2}$a,AB=a.
(1)證明:CD⊥平面AOC;
(2)若側(cè)面ABE⊥底面BCDE,且四棱錐A-BCDE的體積為36$\sqrt{2}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)α為銳角,且cos(α+$\frac{π}{6}$)=$\frac{3\sqrt{10}}{10}$,tan(α+β)=$\frac{2}{5}$.
(1)求sin(2α+$\frac{π}{6}$)的值;
(2)求tan(2β-$\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{log_2}x,x>0\\ f({x+3}),x≤0\end{array}$,則f(-1)的值是( 。
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=mx2-2mx+n(m>0)在區(qū)間[1,3]上的最大值為5,最小值為1,設(shè)$g(x)=\frac{f(x)}{x}$.
(Ⅰ)求m、n的值;
(Ⅱ)證明:函數(shù)g(x)在[$\sqrt{n}$,+∞)上是增函數(shù);
(Ⅲ)若函數(shù)F(x)=g(2x)-k•2x在x∈[-1,1]上有零點(diǎn),求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=x3+bx(x∈R)在[-1,1]上是減函數(shù),則b的取值范圍是(-∞,-3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.執(zhí)行如圖的程序框圖,那么輸出S的值是( 。
A.2B.$\frac{1}{2}$C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知全集U=Z,集合A={3,4},A∪B={1,2,3,4},那么(∁UA)∩B=(  )
A.{1,2}B.{3,4}C.{1,2,3,4}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如圖所示是一個四棱錐的三視圖,則該幾何體的體積為(  )
A.3B.4C.6D.8

查看答案和解析>>

同步練習(xí)冊答案