分析 (1)證明:AO⊥CD,利用CO⊥CD,即可證明CD⊥平面AOC;
(2)若側(cè)面ABE⊥底面BCDE,AO⊥底面BCDE,利用四棱錐A-BCDE的體積為36$\sqrt{2}$,即可求a的值.
解答 (1)證明:∵AB=AE,BO=EO,
∴AO⊥BE,
∵BE∥CD,
∴AO⊥CD,
∵CO⊥CD,CO∩AO=O,
∴CD⊥平面AOC;
(2)證明:∵側(cè)面ABE⊥底面BCDE,AO⊥BE
∴AO⊥底面BCDE,
∵△ABE,AB=AC=a,∠BAE為直角,∴BE=$\sqrt{2}a$,AO=$\frac{\sqrt{2}}{2}$a,
∵四棱錐A-BCDE的體積為36$\sqrt{2}$,
∴VA-BCDE=$\frac{1}{3}×{a}^{2}×\frac{\sqrt{2}}{2}a$=36$\sqrt{2}$,
∴a=6.
點(diǎn)評 本小題主要考查空間線面關(guān)系、幾何體的體積等知識,考查數(shù)形結(jié)合、化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,以及空間想象能力、推理論證能力和運(yùn)算求解能力,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{{\sqrt{5}}}{5}$ | D. | $\frac{{2\sqrt{5}}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | 2 | C. | $\frac{5}{2}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | 2 | D. | -2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com