橢圓的焦點為,點在橢圓上,若的大小為                      

試題分析:根據(jù)橢圓的方程橢圓,可知
那么在中,結(jié)合余弦定理,可知的大小為。故答案為。
點評:解決該試題的關(guān)鍵是利用橢圓的定義,以及橢圓的性質(zhì),表示出焦點三角形三邊,求解得到角,屬于基礎(chǔ)題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線頂點在原點,焦點在x軸上,又知此拋物線上一點A(4,m)到焦點的距離為6.  
(1)求此拋物線的方程;
(2)若此拋物線方程與直線相交于不同的兩點A、B,且AB中點橫坐標為2,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)
已知橢圓的兩焦點是,離心率
(Ⅰ)求橢圓的方程;
(Ⅱ)若在橢圓上,且,求DPF1F2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓的一個焦點與拋物線的焦點重合,則該橢圓的離心率為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若拋物線的焦點與雙曲線的右焦點重合,則的值          

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線軸交于點,與直線交于點,橢圓為左頂點,以為右焦點,且過點,當(dāng)時,橢圓的離心率的范圍是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分15分)
在平面內(nèi),已知橢圓的兩個焦點為,橢圓的離心率為 ,點是橢圓上任意一點, 且
(1)求橢圓的標準方程;
(2)以橢圓的上頂點為直角頂點作橢圓的內(nèi)接等腰直角三角形,這樣的等腰直角三角形是否存在?若存在請說明有幾個、并求出直角邊所在直線方程?若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若正三角形的一個頂點在原點,另兩個頂點在拋物線上,則這個三角形的面積為         。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過點A(,0)作橢圓的弦,弦中點的軌跡仍是橢圓,記為,若的離心率分別為,則的關(guān)系是(     )。
A.B.=2
C.2D.不能確定

查看答案和解析>>

同步練習(xí)冊答案