(本題滿分15分)
在平面內(nèi),已知橢圓的兩個焦點為,橢圓的離心率為 ,點是橢圓上任意一點, 且,
(1)求橢圓的標準方程;
(2)以橢圓的上頂點為直角頂點作橢圓的內(nèi)接等腰直角三角形,這樣的等腰直角三角形是否存在?若存在請說明有幾個、并求出直角邊所在直線方程?若不存在,請說明理由.
(1)  (2)

試題分析:解:(1)由題意得 
方程為:                                  ---------------------5分
(2)設(shè)的直線方程為設(shè),(不妨設(shè)
,    ----------------------7分
 


,即,即
所以,存在3個等腰直角三角形。
直角邊所在直線方程為        ………15分
注:求出的給2分
點評:解決該試題的關(guān)鍵是熟練運用橢圓的性質(zhì)得到a,b,c的關(guān)系,進而得到其方程,同時聯(lián)立方程組,結(jié)合韋達定理來求解探索性問題,屬于中檔題。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
橢圓的左、右焦點分別為、,點滿足
(1)求橢圓的離心率;
(2)設(shè)直線與橢圓相交于兩點,若直線與圓相交于兩點,且,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知是拋物線的焦點,過且斜率為的直線交兩點.設(shè),則的值等于       

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓的焦點為,點在橢圓上,若的大小為                      

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,已知點是橢圓的右頂點,若點在橢圓上,且滿足.(其中為坐標原點)

(1)求橢圓的方程;
(2)若直線與橢圓交于兩點,當時,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
已知點為拋物線: 的焦點,為拋物線上的點,且

(Ⅰ)求拋物線的方程和點的坐標;
(Ⅱ)過點引出斜率分別為的兩直線,與拋物線的另一交點為與拋物線的另一交點為,記直線的斜率為
(。┤,試求的值;
(ⅱ)證明:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(14分)如圖,已知拋物線C1: y=x2, 與圓C2: x2+(y+1)2="1," 過y軸上一點A(0, a)(a>0)作圓C2的切線AD,切點為D(x0, y0).

(1)證明:(a+1)(y0+1)=1
(2)若切線AD交拋物線C1于E,且E為AD的中點,求點A縱坐標a.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓的長軸長是短軸長的倍,則橢圓的離心率等于
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分10分)
已知一條曲線上的點到定點的距離是到定點距離的二倍,求這條曲線的方程.

查看答案和解析>>

同步練習冊答案