一個(gè)多面體的直觀圖及三視圖如圖所示(其中M、N分別是AF、BC的中點(diǎn)),則多面體F-MNB的體積是
 
考點(diǎn):由三視圖求面積、體積
專題:計(jì)算題,空間位置關(guān)系與距離
分析:由三視圖知,該多面體是低面為直角三角形的直三棱柱ADE-BCF,將多面體F-MNB的體積轉(zhuǎn)化為三棱錐M-BNF,又利用三棱錐M-MNB與三棱錐A-BCF的體積關(guān)系求解.
解答: 解:由三視圖知,該多面體是低面為直角三角形的直三棱柱ADE-BCF,

且AB=BC=BF=4,DE=CF=4
2
,∠CBF=
π
2

連接BM,F(xiàn)N,∵M(jìn)、N分別是AF、BC的中點(diǎn),
∴VM-BNF=
1
2
VM-BCF=
1
2
×
1
2
VA-BCF=
1
4
×
1
3
×
1
2
×BF×BC×AB=
8
3

故答案為:
8
3
點(diǎn)評:本題考查了由三視圖求幾何體的體積問題,考查了學(xué)生空間想象能力,轉(zhuǎn)化、運(yùn)算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(2x-1)的定義域?yàn)椋?,1),求f(x)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)M,N為圓C:x2+y2=9上的任意兩點(diǎn),且|MN|<2,若弦MN中點(diǎn)組成的區(qū)域?yàn)棣,任意有序(qū)崝?shù)對(a,b)∈Ω,記函數(shù)f(x)=
3
2
ax2+bx+c在區(qū)間x∈(-1,1)上有且只有一個(gè)極小值點(diǎn)為事件A,則事件A發(fā)生的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
2014x+1+2013
2014x+1
的最大值為M,最小值為N,那么M+N=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的導(dǎo)函數(shù)f′(x)是二次函數(shù),且f′(x)=0的兩根為0和2,若函數(shù)f(x)在開區(qū)間(2m-3,
m2+2
2
)上存在最大值和最小值,則實(shí)數(shù)m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于x的方程x2+2(m+1)x+m-4=0有實(shí)根,且一個(gè)大于2,一個(gè)小于2,則m取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an},a1=1,a2=2,an•an+1•an+2=an+an+1+an+2,且an+1an+2≠1,則a1+a2+a3=
 
,S2013=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={a+2,(a+1)2,a2+3a+3},若1∈A,則a的所有可能取值構(gòu)成的集合為( 。
A、{-1,0}
B、{-2,-1,0}
C、{0}
D、{-2,0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)
1
i15
(i為虛數(shù)單位)的值為( 。
A、iB、1C、-iD、-1

查看答案和解析>>

同步練習(xí)冊答案