(本小題滿分12分)
如圖,已知多面體ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1,F為CD的中點(diǎn).
(Ⅰ)求證:AF⊥平面CDE;
(Ⅱ)求面ACD和面BCE所成銳二面角的大。
(1)要證明面面垂直 ,則要通過(guò)判定定理,先證明DE⊥平面ACD,AF平面ACD,∴DE⊥AF,以及AF⊥CD,從而得到證明。
(2) 45°
解析試題分析:解:(Ⅰ)∵DE⊥平面ACD,AF平面ACD,∴DE⊥AF.
又∵AC=AD,F為CD中點(diǎn),∴AF⊥CD,
因CD∩DE=D,∴AF⊥平面CDE. ……………… 4分
(Ⅱ)取CE的中點(diǎn)Q,連接FQ,因?yàn)?i>F為CD的中點(diǎn),則FQ∥DE,故DE⊥平面ACD,∴FQ⊥平面ACD,又由(Ⅰ)可知FD,FQ,FA兩兩垂直,以O為坐標(biāo)原點(diǎn),建立如圖坐標(biāo)系,
則F(0,0,0),C(,0,0),A(0,0,),B(0,1,),E(1,2,0).
設(shè)面BCE的法向量,則
即取.
又平面ACD的一個(gè)法向量為,
∴ .
∴面ACD和面BCE所成銳二面角的大小為45°.
考點(diǎn):空間中二面角和線面垂直的證明
點(diǎn)評(píng):解決的關(guān)鍵是利用線面垂直的判定定理以及二面角的定義來(lái)分析求解,屬于基礎(chǔ)題 。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)如圖,直角梯形與等腰直角三角形所在的平面互相垂直.∥,,,.
(1)求直線與平面所成角的正弦值;
(2)線段上是否存在點(diǎn),使// 平面?若存在,求出;若不存在,說(shuō)明理由.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分12分)
如圖,在四棱錐中,平面平面,,是等邊三角形,已知,.
(Ⅰ)設(shè)是上的一點(diǎn),證明:平面平面;
(Ⅱ)求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知△BCD中,∠BCD=,BC=CD=1,AB⊥平面BCD,∠ADB=,E、F分別是AC、AD上的動(dòng)點(diǎn),且
(Ⅰ)求證:不論λ為何值,總有平面BEF⊥平面ABC;
(Ⅱ)當(dāng)λ為何值時(shí),平面BEF⊥平面ACD ?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
如圖,已知⊙所在的平面,AB是⊙的直徑,,是⊙上一點(diǎn),且,分別為中點(diǎn)。
(1)求證:平面;
(2)求證:;
(3)求三棱錐-的體積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,三棱錐P-ABC中,PC平面ABC,PC=AC=2, AB=BC,D是PB上一點(diǎn),且CD平面PAB
(1)求證:AB平面PCB;
(2)求異面直線AP與BC所成角的大小;
(3)求二面角C-PA-B 的大小的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
如圖,在四棱錐中,平面平面,∥是正三角形,已知
(1) 設(shè)是上的一點(diǎn),求證:平面平面;
(2) 求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示,在四棱錐中,底面ABCD是邊長(zhǎng)為a的正方形,側(cè)面底面ABCD,且,若E,F分別為PC,BD的中點(diǎn).
(1)求證:平面PAD;
(2)求證:平面PDC平面PAD;
(3)求四棱錐的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com