15.已知函數(shù)f(x)=2x+1,則f[f(x)]=4x+3.

分析 由函數(shù)的性質(zhì)得f[f(x)]=2(2x+1)+1,由此能求出結(jié)果.

解答 解:∵函數(shù)f(x)=2x+1,
∴f[f(x)]=2(2x+1)+1=4x+3.
故答案為:4x+3.

點(diǎn)評(píng) 本題考查函數(shù)的解析式的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知f(x)=5sin(2ωx-$\frac{π}{3}$)(ω>0)的最小正周期為π.
(1)求ω;
(2)求x∈[0,π]時(shí),函數(shù)f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知等差數(shù)列{bn}滿足b1=1,b4=7.設(shè)cn=$\frac{1}{bnbn+1}$,數(shù)列{cn}的前n項(xiàng)和為Tn,證明:$\frac{1}{3}$≤Tn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.下列4個(gè)命題是真命題的是( 。
①“若x2+y2=0,則x、y均為零”的逆命題
②“相似三角形的面積相等”的否命題
③“若A∩B=A,則A⊆B”的逆否命題
④“末位數(shù)字不是零的數(shù)可被3整除”的逆否命題.
A.①②B.②③C.①③D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若“?x∈[0,$\frac{π}{4}$],m≥tanx”是真命題,則實(shí)數(shù)m的取值范圍是[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.與向量$\overrightarrow{a}$=(3,4)垂直且模長(zhǎng)為2的向量為($\frac{8}{5}$,-$\frac{6}{5}$)或(-$\frac{8}{5}$,$\frac{6}{5}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.下列函數(shù)中能用二分法求零點(diǎn)的是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知正項(xiàng)數(shù)列{an},{bn}滿足:a1=3,a2=6,{bn}是等差數(shù)列,且對(duì)任意正整數(shù)n,都有bn,$\sqrt{{a}_{n}}$,bn+1成等比數(shù)列.
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)求Sn=$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.等差數(shù)列{an}中,a1+a7=10,S9=63,則數(shù)列{an}的公差為( 。
A.4B.3C.2D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案