3.等差數(shù)列{an}中,a3=2,a5=7,則a7=( 。
A.10B.20C.16D.12

分析 設(shè)出等差數(shù)列的公差,由已知求出公差,再代入等差數(shù)列的通項(xiàng)公式得答案.

解答 解:設(shè)等差數(shù)列{an}的公差為d,
由a3=2,a5=7,得$d=\frac{{a}_{5}-{a}_{3}}{5-3}=\frac{7-2}{2}=\frac{5}{2}$.
∴${a}_{7}={a}_{5}+2d=7+2×\frac{5}{2}=12$.
故選:D.

點(diǎn)評(píng) 本題考查等差數(shù)列的通項(xiàng)公式,是基礎(chǔ)的計(jì)算題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,四棱錐P-OABC的底面為一矩形,PO⊥平面OABC.設(shè)$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OC}$=$\overrightarrow$,$\overrightarrow{OP}$=$\overrightarrow{c}$,E,F(xiàn)分別是PC和PB的中點(diǎn),用$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$表示$\overrightarrow{BF}$、$\overrightarrow{BE}$、$\overrightarrow{AE}$、$\overrightarrow{EF}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知圓心為C的圓,滿足下列條件:圓心C位于x軸正半軸上,與直線3x-4y+7=0相切,且被y軸截得的弦長(zhǎng)為2$\sqrt{3}$,圓C的面積小于13.
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)一條光線從點(diǎn)A(4,1)出發(fā),經(jīng)直線y=x-5反射后與圓C相切,求入射光線所在直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若兩個(gè)函數(shù)的圖象有一個(gè)公共點(diǎn),并在該點(diǎn)處的切線相同,就說(shuō)這兩個(gè)函數(shù)有why點(diǎn).已知函數(shù)f(x)=lnx和g(x)=em•ex有why點(diǎn),則m所在的區(qū)間為( 。
A.$({-2,-\frac{3}{2}})$B.$({-\frac{3}{2},-1})$C.$({-\frac{5}{2},-2})$D.$({-1,-\frac{1}{3}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.若數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2an+1,則an=-2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.在幾何體①圓錐;②正方體;③圓柱;④球;⑤正四面體中,三視圖完全一樣的是②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)$f(x)=\frac{{\sqrt{3}}}{2}sin2x-{cos^2}x+\frac{3}{4}(x∈R)$
(1)當(dāng)$x∈[{-\frac{π}{12},\frac{5π}{12}}]$時(shí),求函數(shù)f(x)的最小值和最大值;
(2)若x=x0$({0≤{x_0}≤\frac{π}{2}})$為f(x)的一個(gè)零點(diǎn),求sin2x0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.若橢圓${C_1}:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$過(guò)點(diǎn)(2,1),離心率為$\frac{{\sqrt{2}}}{2}$,F(xiàn)1,F(xiàn)2分別為其左、右焦點(diǎn).
(1)若點(diǎn)P與F1,F(xiàn)2的距離之比為$\frac{1}{3}$,求直線$x-\sqrt{2}y+\sqrt{3}=0$被點(diǎn)P所在的曲線C2截得的弦長(zhǎng);
(2)設(shè)A1,A2分別為橢圓C1的左、右頂點(diǎn),Q為C1上異于A1,A2的任意一點(diǎn),直線A1Q交C1的右準(zhǔn)線于點(diǎn)M,直線A2Q交C1的右準(zhǔn)線于點(diǎn)N,試問(wèn)$\overrightarrow{M{F_2}}•\overrightarrow{N{F_2}}$是否為定值,若是,求出其定值,若不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知集合A={1,3},B={0,1,a},A∪B={0,1,3},則a=3.

查看答案和解析>>

同步練習(xí)冊(cè)答案