分析 (Ⅰ)取AD的中點(diǎn)O,連接OP,OB,證明AD⊥平面OPB,即可證明PB⊥AD;
(Ⅱ)證明OP⊥平面CBD,利用等體積求點(diǎn)C到平面PBD的距離.
解答 (Ⅰ)證明:取AD的中點(diǎn)O,連接OP,OB,則
∵四棱錐P-ABCD中,底面ABCD為菱形,且PA=PD=DA,∠BAD=60°,
∴OP⊥AD,OB⊥AD,
∵OP∩OB=O,
∴AD⊥平面OPB,
∵PB?平面OPB,
∴PB⊥AD;
(Ⅱ)解:∵PA=PD=DA=2,
∴OP=OB=$\sqrt{3}$,
∵PB=$\sqrt{6}$,
∴OP2+OB2=PB2,
∴OP⊥OB,
∵OP⊥AD,AD∩OB=O,
∴OP⊥平面CBD,
△PBD中,PD=BD=2,PB=$\sqrt{6}$,∴S△PBD=$\frac{1}{2}•\sqrt{6}•\sqrt{4-(\frac{\sqrt{6}}{2})^{2}}$=$\frac{\sqrt{15}}{2}$
設(shè)點(diǎn)C到平面PBD的距離為h,則$\frac{1}{3}•\frac{\sqrt{15}}{2}h$=$\frac{1}{3}•\frac{\sqrt{3}}{4}•4•\sqrt{3}$=$\frac{2\sqrt{15}}{5}$.
點(diǎn)評 本題考查線面垂直的判定與性質(zhì),考查點(diǎn)到平面距離的計算,考查體積的計算,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 2 | C. | $\sqrt{5}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 40° | B. | 40°或140° | C. | 140° | D. | 50° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com