7.設(shè)i為虛數(shù)單位,復(fù)數(shù)z=1-i,則$\frac{2}{z}$+z=( 。
A.1B.2C.-iD.2i

分析 把z=1-i代入$\frac{2}{z}$+z,然后利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)得答案.

解答 解:∵z=1-i,
∴$\frac{2}{z}$+z=$\frac{2}{1-i}+(1-i)=\frac{2(1+i)}{(1-i)(1+i)}+(1-i)=1+i+1-i=2$.
故選:B.

點(diǎn)評(píng) 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,是基礎(chǔ)的計(jì)算題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.如表提供了某廠節(jié)能降耗改造后在生產(chǎn)A產(chǎn)品過(guò)程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸)的幾組對(duì)應(yīng)數(shù)據(jù),根據(jù)表中提供的數(shù)據(jù),求出y關(guān)于x的線性回歸方程$\widehat{y}$=0.7x+0.35,則下列結(jié)論錯(cuò)誤的是( 。
 x 5
2.5 4.5 
A.線性回歸直線一定過(guò)點(diǎn)(4.5,3.5)
B.產(chǎn)品的生產(chǎn)能耗與產(chǎn)量呈正相關(guān)
C.t的取值必定是3.5
D.A產(chǎn)品每多生產(chǎn)1噸,則相應(yīng)的生產(chǎn)能耗約增加0.7噸

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.設(shè)函數(shù)f(x)=lnx,且x0、x1、x2∈(0,+∞),下列命題:
①若x1<x2,則$\frac{1}{{x}_{2}}$>$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$
②存在x0∈(x1,x2),(x1<x2),使得$\frac{1}{{x}_{0}}=\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$
③若x1>1,x2>1,則$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<1
④對(duì)任意的x1、x2,都有f($\frac{{x}_{1}+{x}_{2}}{2}$)$>\frac{f({x}_{1})+f({x}_{2})}{2}$
其中正確的是②③④(把你認(rèn)為正確結(jié)論的序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知扇形周長(zhǎng)為40cm,面積為100cm2,則它的半徑和圓心角分別為10cm和2rad.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在△ABC中,已知$\sqrt{3}tanAtanB-\sqrt{3}=tanA+tanB$,記角A,B,C的對(duì)邊依次為a,b,c.
(1)求角C的大;
(2)若c=2,且△ABC是銳角三角形,求a2+b2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.曲線y=-x3+2x+3在點(diǎn)(1,4)處的切線的斜率為(  )
A.-1B.1C.-$\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.(1)設(shè)z=$\frac{{({1-4i})({1+i})+2+4i}}{3+4i}$,求|z|.
(2)z∈C,解方程z•$\overline z-2zi=1+2\sqrt{2}$i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=$\frac{1+cos2x}{\sqrt{2}sin(\frac{π}{2}+x)}$+$\sqrt{6}$sinx
(Ⅰ)求函數(shù)y=f(x)的單調(diào)遞增區(qū)間
(Ⅱ)求函數(shù)y=f(x)在區(qū)間[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.若sin(θ-$\frac{π}{4}$)=$\frac{\sqrt{5}}{5}$,θ∈($\frac{3π}{4}$,$\frac{5π}{4}$),則cos(2θ+$\frac{2π}{3}$)=( 。
A.$\frac{4+3\sqrt{3}}{10}$B.-$\frac{4+3\sqrt{3}}{10}$C.$\frac{3\sqrt{3}-4}{10}$D.$\frac{4-3\sqrt{3}}{10}$

查看答案和解析>>

同步練習(xí)冊(cè)答案