【題目】在平面直角坐標(biāo)系xOy中,已知圓C的方程為,點(diǎn)
.
求過(guò)點(diǎn)M且與圓C相切的直線方程;
過(guò)點(diǎn)M任作一條直線與圓C交于A,B兩點(diǎn),圓C與x軸正半軸的交點(diǎn)為P,求證:直線PA與PB的斜率之和為定值.
【答案】(1),或
;(2)見(jiàn)解析
【解析】
(1)顯然直線l的斜率不存在時(shí),與圓相切,直線l的斜率存在時(shí),設(shè)切線方程為y+3=k(x﹣2),利用圓心到直線的距離等于半徑,即可求過(guò)點(diǎn)P(2,﹣3)且與圓C相切的直線l的方程;
(2)設(shè)出AB的方程,代入圓的方程,轉(zhuǎn)化為根與系數(shù)之間的關(guān)系,利用設(shè)而不求思想結(jié)合直線斜率進(jìn)行整理即可.
當(dāng)直線l的斜率不存在時(shí),顯然直線
與圓相切,
當(dāng)直線l的斜率存在時(shí),設(shè)切線方程為,
圓心到直線的距離等于半徑,
,解得
,切線方程為:
即過(guò)點(diǎn)且與圓C相切的直線l的方程;
,或
.
依題意可得當(dāng)直線AB的斜率存在且不為0時(shí),設(shè)直線AB:
,代入
,
整理得;
設(shè),
,又
,
,
,
直線PA與PB的斜率之和為
,
,
,
,
,
為定值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在R上的函數(shù),其中a為常數(shù).
(I)若x=1是函數(shù)的一個(gè)極值點(diǎn),求a的值
(II)若函數(shù)在區(qū)間(-1,0)上是增函數(shù),求a的取值范圍
(III)若函數(shù),在x=0處取得最大值,求正數(shù)a的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分分)
已知半徑為的圓的圓心在
軸上,圓心的橫坐標(biāo)是整數(shù),且與直線
相切.
(Ⅰ)求圓的方程.
(Ⅱ)設(shè)直線與圓相交于
,
兩點(diǎn),求實(shí)數(shù)
的取值范圍.
(Ⅲ)在(Ⅱ)的條件下,是否存在實(shí)數(shù),使得點(diǎn)
到
,
兩點(diǎn)的距離相等,若存在,求出實(shí)數(shù)
的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列和等比數(shù)列
滿足
,
,
.
(1)求的通項(xiàng)公式;
(2)求和: .
【答案】(1);(2)
.
【解析】試題分析:(1)根據(jù)等差數(shù)列的
,
,列出關(guān)于首項(xiàng)
、公差
的方程組,解方程組可得
與
的值,從而可得數(shù)列
的通項(xiàng)公式;(2)利用已知條件根據(jù)題意列出關(guān)于首項(xiàng)
,公比
的方程組,解得
、
的值,求出數(shù)列
的通項(xiàng)公式,然后利用等比數(shù)列求和公式求解即可.
試題解析:(1)設(shè)等差數(shù)列{an}的公差為d. 因?yàn)?/span>a2+a4=10,所以2a1+4d=10.解得d=2.
所以an=2n1.
(2)設(shè)等比數(shù)列的公比為q. 因?yàn)?/span>b2b4=a5,所以b1qb1q3=9.
解得q2=3.所以.
從而.
【題型】解答題
【結(jié)束】
18
【題目】已知命題:實(shí)數(shù)
滿足
,其中
;命題
:方程
表示雙曲線.
(1)若,且
為真,求實(shí)數(shù)
的取值范圍;
(2)若是
的充分不必要條件,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在上的函數(shù)
,如果滿足:對(duì)任意
,存在常數(shù)
,都有
成立,則稱
是
上的有界函數(shù),其中
稱為函數(shù)
的上界,已知函數(shù)
.
(Ⅰ)若是奇函數(shù),求
的值.
(Ⅱ)當(dāng)時(shí),求函數(shù)
在
上的值域,判斷函數(shù)
在
上是否為有界函數(shù),并說(shuō)明理由.
(Ⅲ)若函數(shù)在
上是以
為上界的函數(shù),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某百貨公司1~6月份的銷(xiāo)售量與利潤(rùn)的統(tǒng)計(jì)數(shù)據(jù)如表:
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
銷(xiāo)售量x/萬(wàn)件 | 10 | 11 | 13 | 12 | 8 | 6 |
利潤(rùn)y/萬(wàn)元 | 22 | 25 | 29 | 26 | 16 | 12 |
(1)根據(jù)2~5月份的統(tǒng)計(jì)數(shù)據(jù),求出y關(guān)于x的回歸直線方程x+
;
(2)若由回歸直線方程得到的估計(jì)數(shù)據(jù)與剩下的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2萬(wàn)元,則認(rèn)為得到的回歸直線方程是理想的,試問(wèn)所得回歸直線方程是否理想?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|x﹣a|,不等式f(x)≤3的解集為[﹣1,5].
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)若f(x)+f(x+5)≥m對(duì)一切實(shí)數(shù)x恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市為了制定合理的節(jié)水方案,對(duì)居民用水情況進(jìn)行了調(diào)查,通過(guò)抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.
(I)求直方圖中的a值;
(II)設(shè)該市有30萬(wàn)居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),說(shuō)明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com