函數(shù)f(x)=cos(2x+φ)的圖象向左平移
π
3
單位后為奇函數(shù),則φ的最小正值為
 
考點:函數(shù)y=Asin(ωx+φ)的圖象變換
專題:三角函數(shù)的圖像與性質(zhì)
分析:根據(jù)三角函數(shù)的奇偶性的性質(zhì)即可得到結(jié)論.
解答: 解:函數(shù)f(x)=cos(2x+φ)的圖象向左平移
π
3
單位后得到函數(shù)為y=cos[2(x+
π
3
)+φ]=cos(2x+
3
+φ),
若函數(shù)為奇函數(shù),
3
+φ=
π
2
+kπ,k∈Z,
解得φ=-
6
+kπ,
當k=1時,φ=
π
6
,
故答案為:
π
6
點評:本題主要考查三角函數(shù)的圖象關(guān)系以及三角函數(shù)奇偶性的應(yīng)用,要求熟練掌握三角函數(shù)的圖象和性質(zhì).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)A1、A2是雙曲線
x2
4
-
y2
3
=1的實軸兩個端點,P1P2是雙曲線的垂直于x軸的弦,
(Ⅰ)直線A1P1與A2P2交點P的軌跡C的方程;
(Ⅱ)過x=4與x軸的交點Q作直線與(1)中軌跡C交于M、N兩點,連接FN、FM,其中F(1,0),求證:kFN+kFM為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓M的半徑為3,圓心在x軸正半軸上,直線3x-4y+9=0與圓M相切
(Ⅰ)求圓M的標準方程;
(Ⅱ)過點N(0,-3)的直線L與圓M交于不同的兩點A(x1,y1),B(x2,y2),而且滿足x12+x22=
21
2
x1
x2,求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線l的參數(shù)方程是
x=-1+2t
y=2-3t
(t∈R,t是參數(shù)),試寫出直線l的一個方向向量是
 
.(答案不唯一)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=2sinwx(0<ω<1)在區(qū)間[0,
π
3
]最大值是
2
,則w=( 。
A、
2
3
B、
3
2
C、
4
3
D、
3
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=ax2-xlnx-(2a-1)x+a-1(a∈R)
(1)當a=0時,求函數(shù)f(x)在點P(e,f(e))處的切線方程;
(2)對任意的x∈[1,+∞),函數(shù)f(x)≥0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

平面α平行平面β,點A,C∈平面α,點B,D∈平面β,直線AB與CD相交于點S,且AS=8,BS=9,CD=34.則線段CS的長度是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)g(x)=ax2+bx+c(a>0),且g(1)=-
a
2

(1)求證:函數(shù)g(x)有兩個零點
(2)設(shè)m,n是函數(shù)g(x)的兩個零點,求|m-n|的取值范圍
(3)討論函數(shù)g(x)在區(qū)間(0,2)內(nèi)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={m|y=
12
m
∈N,m∈N},用列舉法表示集合A,A=
 

查看答案和解析>>

同步練習冊答案