18.已知向量$\overrightarrow{a}$=(3,4),$\overrightarrow$=(9,12),$\overrightarrow{c}$=(4,-3),若向量$\overrightarrow{m}$=2$\overrightarrow{a}$-$\overrightarrow$,$\overrightarrow{n}$=$\overrightarrow{a}$+$\overrightarrow{c}$,則向量$\overrightarrow{m}$與$\overrightarrow{n}$的夾角為$\frac{3π}{4}$.

分析 根據(jù)向量加法、減法及數(shù)乘的坐標(biāo)運(yùn)算便可得出$\overrightarrow{m}=(-3,-4),\overrightarrow{n}=(7,1)$,根據(jù)$cos<\overrightarrow{m},\overrightarrow{n}>=\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$即可求出$cos<\overrightarrow{m},\overrightarrow{n}>=-\frac{\sqrt{2}}{2}$,從而得出向量$\overrightarrow{m},\overrightarrow{n}$的夾角的大。

解答 解:$\overrightarrow{m}=2\overrightarrow{a}-\overrightarrow=(-3,-4)$,$\overrightarrow{n}=\overrightarrow{a}+\overrightarrow{c}=(7,1)$;
∴$\overrightarrow{m}•\overrightarrow{n}=-25,|\overrightarrow{m}|=5,|\overrightarrow{n}|=5\sqrt{2}$;
∴$cos<\overrightarrow{m},\overrightarrow{n}>=\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}=\frac{-25}{25\sqrt{2}}=-\frac{\sqrt{2}}{2}$;
又$0≤<\overrightarrow{m},\overrightarrow{n}>≤π$;
∴$<\overrightarrow{m},\overrightarrow{n}>=\frac{3π}{4}$.
故答案為:$\frac{3π}{4}$.

點(diǎn)評(píng) 考查向量坐標(biāo)的加法、減法和數(shù)乘運(yùn)算,根據(jù)向量的坐標(biāo)求向量的長(zhǎng)度,向量數(shù)量積的坐標(biāo)運(yùn)算,以及向量夾角的余弦公式,已知三角函數(shù)求角.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知m,n為異面直線,α,β為兩個(gè)不同的平面,α∥m,α∥n,直線l滿足l⊥m,l⊥n,l∥β,則( 。
A.α∥β且l∥αB.α∥β且l⊥αC.α⊥β且l∥αD.α⊥β且l⊥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知拋物線y2=2px(p>0)上一點(diǎn)M(t,8)到焦點(diǎn)F的距離是$\frac{5}{4}t$.
(1)求拋物線C的方程;
(2)過(guò)F的直線與拋物線C交于A,B兩點(diǎn),是否存在一個(gè)定圓與以AB為直徑的圓內(nèi)切,若存在,求該定圓的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知橢圓E:$\frac{{x}^{2}}{2}$+y2=1,過(guò)點(diǎn)P(-2,0)的直線l交E于A,B兩點(diǎn),且$\overrightarrow{PB}=λ\overrightarrow{PA}$(λ>1).點(diǎn)C與點(diǎn)B關(guān)于x軸對(duì)稱.
(1)求證:直線AC過(guò)定點(diǎn)Q,并求該定點(diǎn);
(2)在(1)的條形下,求△QAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知命題p:?x∈R,x-2>lgx,命題q:?x∈R,sinx<x,則( 。
A.命題p∨q是假命題B.命題p∧q是真命題
C.命題p∧(¬q)是真命題D.命題p∨(¬q)是假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知點(diǎn)P是邊長(zhǎng)為2的正三角形ABC的重心,則$\overrightarrow{AP}$•($\overrightarrow{AB}$+$\overrightarrow{AC}$)的值為( 。
A.0B.2C.2$\sqrt{3}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.下列各數(shù)中,最小的數(shù)是( 。
A.75B.111111(2)C.210(6)D.85(9)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.sin$\frac{7π}{6}$=-$\frac{1}{2}$,cos222.5°-sin222.5°=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在一次考試中,某班學(xué)習(xí)小組的五名學(xué)生的數(shù)學(xué)、物理成績(jī)?nèi)绫恚?br />
學(xué)生 A1 A2 A3 A4 A5
數(shù)學(xué) 89 91 93 95 97
物理 87 89 89 92 93
(1)要在這五名學(xué)生中選2名參加一項(xiàng)活動(dòng),求選中的同學(xué)中至少有一人的數(shù)學(xué)成績(jī)不低于95分的概率.
(2)請(qǐng)?jiān)谒o的直角坐標(biāo)系中畫(huà)出它們的散點(diǎn)圖,并求出這些數(shù)據(jù)的線性回歸直線方程.
(3)若該學(xué)習(xí)小組中有一人的數(shù)學(xué)成績(jī)是92分,試估計(jì)其物理成績(jī)(結(jié)果保留整數(shù)).
參考公式回歸直線的方程是:y=bx+a,其中對(duì)應(yīng)的值.b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,a=$\overline{y}$-b$\overline{x}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案