分析 (Ⅰ)原不等式化為因式乘積的形式,利用絕對值不等式的幾何意義,求解即可.
(Ⅱ)直接利用因式分解,放縮法,絕對值的性質(zhì),證明即可.
解答 (24)(本小題滿分10分)選修4-5:不等式選講
解:(Ⅰ)原不等式|f(x)|+|x2+2x|≥6|x|可化為:(|x-2|+|x+2|)|x|≥6|x|;解得x≤-3或x≥3
,或x=0.
所以,原不等式的解集為{x|x≤-3或x≥3,或x=0}; …(5分)
(Ⅱ)證明:∵f(x)=x2-2x,|x-a|<1,
∴|f(x)-f(a)|
=|x2-2x-a2+2a|
=|x-a||x+a-2|
<|x+a-2|
=|(x-a)+2a-2|
≤|x-a|+|2a-2|
<1+2|a|+2
=2|a|+3,
∴|f(x)-f(a)|<2|a|+3.…(10分)
點評 本題考查絕對值不等式的解法,不等式的證明,絕對值的幾何意義,考查邏輯推理能力以及計算能力.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 10 | B. | 5 | C. | 3 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x-2y=0 | B. | x+2y-4=0 | C. | 2x+y-5=0 | D. | 2x-y-1=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-2,2] | B. | [2,+∞) | C. | (-∞,-2]∪[2,+∞) | D. | (-∞,-1]∪[1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1+i | B. | 2-i | C. | 3-i | D. | -i |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com