【題目】在某次測量中得到的A樣本數(shù)據(jù)如下:22,23,25,26,31,30;若B樣本數(shù)據(jù)恰好是A樣本中每個數(shù)據(jù)都減去10后所得的數(shù)據(jù),則A,B兩樣本的下列數(shù)字特征相同的是( )
A.方差B.平均數(shù)C.眾數(shù)D.中位數(shù)
科目:高中數(shù)學 來源: 題型:
【題目】某網絡營銷部門為了統(tǒng)計某市網友“雙11”在某淘寶店的網購情況,隨機抽查了該市當天60名網友的網購金額情況,得到如下數(shù)據(jù)統(tǒng)計表(如圖):
若網購金額超過2千元的顧客定義為“網購達人”,網購金額不超過2千元的顧客定義為“非網購達人”,已知“非網購達人”與“網購達人”人數(shù)比恰好為3:2.
(1)試確定的值,并補全頻率分布直方圖;
(2)試營銷部門為了進一步了解這60名網友的購物體驗,從“非網購達人”、“網購達人”中用分層抽樣的方法確定5人,若需從這5人中隨機選取2人進行問卷調查,則恰好選取1名“網購達人”和1名“非網購達人”的概率是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,直三棱柱ABC-A1B1C1底面△ABC中,CA=CB=1,∠BCA=90°,棱AA1=2M,N分別是A1B1,A1A的中點。
(1)求的長度;
(2)求cos(,)的值;
(3)求證:A1B⊥C1M。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了了解我國各景點在大眾中的熟知度,隨機對~歲的人群抽樣了人,回答問題“我國的“五岳”指的是哪五座名山?”統(tǒng)計結果如下圖表.
組號 | 分組 | 回答正確的人數(shù) | 回答正確的人數(shù)占本組的頻率 |
第1組 | [15,25) | 0.5 | |
第2組 | [25,35) | 18 | |
第3組[ | [35,45) | 0.9 | |
第4組 | [45,55) | 9 | 0.36 |
第5組 | [55,65] | 3 |
(1)分別求出的值;
(2)從第組回答正確的人中用分層抽樣的方法抽取人,求第組每組各抽取多少人;
(3)在(2)的條件下抽取的人中,隨機抽取人,求所抽取的人中恰好沒有第組人的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點,平面直角坐標系上的一個動點滿足.設動點的軌跡為曲線.
(1)求曲線的軌跡方程;
(2)點是曲線上的任意一點,為圓的任意一條直徑,求的取值范圍;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在邊長為3的正三角形中, 分別是邊上的點,滿足(如圖),將折起到的位置上,連接(如圖).
(1)在線段A1C上是否存在點Q,使得面QFP//面A1EB,證明你的結論;
(2)求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓,過點作直線與橢圓交于兩點.
(1)若點平分線段,試求直線的方程;
(2)設與滿足(1)中條件的直線平行的直線與橢圓交于兩點,與橢圓交于點,與橢圓交于點,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列命題:
①已知集合,則“”是“”的充分不必要條件;
②“”是“”的必要不充分條件;
③“函數(shù)的最小正周期為”是“”的充要條件;
④“平面向量與的夾角是鈍角”的要條件是“”.
其中正確命題的序號是 .(把所有正確命題的序號都寫上)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】總體由編號為01,02,…,19,20的20個個體組成.利用下面的隨機數(shù)表選取4個個體,選取方法從隨機數(shù)表的第1行第4列數(shù)由左到右由上到下開始讀取,則選出來的第4個個體的編號為( )
第1行 78 16 65 71 02 30 60 14 01 02 40 60 90 28 01 98
第2行 32 04 92 34 49 35 82 00 36 23 48 69 69 38 74 81
A.10B.01C.09D.06
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com