7.已知角α的終邊經(jīng)過點(-4,-3),那么tanα等于( 。
A.$\frac{3}{4}$B.$\frac{4}{3}$C.-$\frac{3}{4}$D.-$\frac{4}{3}$

分析 直接由正切函數(shù)的定義得答案.

解答 解:∵角α的終邊經(jīng)過點(-4,-3),
由正切函數(shù)的定義得:tanα=$\frac{3}{4}$
故選:A.

點評 本題考查了正切函數(shù)的定義,角α終邊上不同于原點的任意一點為P(x,y),則tanα=$\frac{y}{x}$,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

17.在數(shù)列{an}中,a1=$\frac{1}{3}$,an=(-1)n×2an-1,(n≥2,n∈N*),則a5=-$\frac{16}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.曲線y=xex+2x-1在點(0,-1)處的切線方程為y=3x-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知F是拋物線x2=y的焦點,A,B是該拋物線上的兩點,|AF|+|BF|=3,則線段AB的中點到x軸的距離為( 。
A.$\frac{3}{4}$B.1C.$\frac{5}{4}$D.$\frac{7}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.如圖,在三棱椎P-ABC中,D,E,F(xiàn)分別是棱PC、AC、AB的中點,且PA⊥面ABC.
(1)求證:PA∥面DEF;
(2)求證:面BDE⊥面ABC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.函數(shù)f(x)=sinxcosx-cos2x+$\frac{1}{2}$在區(qū)間[0,$\frac{π}{2}$]上的最小值是( 。
A.-1B.-$\frac{1}{2}$C.1D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知命題P:函數(shù)y=lg(ax2+2x+1)的定義域為R;命題Q:不等式(a-2)x2+2(a-2)x-4<0對任意實數(shù)x恒成立.若P∨Q是真命題,P∧Q是假命題;求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知a=cos17°cos23°-sin17°sin23°,b=2cos225°-1,c=$\frac{{\sqrt{3}}}{2}$,則a,b,c的大小關系( 。
A.b>a>cB.c>b>aC.c>a>bD.a>c>b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知隨機變量ξ~B(n,p),若$E(ξ)=\frac{5}{3}$,$D(ξ)=\frac{10}{9}$,則n=5,p=$\frac{1}{3}$.

查看答案和解析>>

同步練習冊答案