在直角坐標(biāo)系中,分別是與軸,軸平行的單位向量,若直角三角形中,,,則的可能值有

A、1個(gè)          B、2個(gè)               C、3個(gè)            D、4個(gè)

 

【答案】

B

【解析】解法一:

(1) 若A為直角,則;

(2) 若B為直角,則

(3) 若C為直角,則。

所以 k 的可能值個(gè)數(shù)是2,選B

解法二:數(shù)形結(jié)合.如圖,將A放在坐標(biāo)原點(diǎn),則B點(diǎn)坐標(biāo)為(2,1),C點(diǎn)坐標(biāo)為(3,k),所以C點(diǎn)在直線x=3上,由圖知,只可能A、B為直角,C不可能為直角.所以 k 的可能值個(gè)數(shù)是2,選B

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)系中,射線OA:x-y=0(x≥0),OB:
3
x+3y=0(x≥0),
過(guò)點(diǎn)P(1,0)作直線分別交射線OA、OB于A、B點(diǎn).
①當(dāng)AB的中點(diǎn)為P時(shí),求直線AB的方程;
②當(dāng)AB的中點(diǎn)在直線y=
1
2
x上時(shí),求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知C1的極坐標(biāo)方程為ρcos(θ-
π
4
)=1
,M,N分別為C1在直角坐標(biāo)系中與x軸,y軸的交點(diǎn).曲線C2的參數(shù)方程為
x=
t
-
1
t
y=4-(t+
1
t
)
(t為參數(shù),且t>0),P為M,N的中點(diǎn),求過(guò)OP(O為坐標(biāo)原點(diǎn))的直線與曲線C2所圍成的封閉圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系中,角φ、2x的終邊分別與單位圓(以原點(diǎn)O為圓心)交于A、B兩點(diǎn),函數(shù)f(x)=
OA
 • 
OB
,若f(x)≤f(
π
6
)
對(duì)x∈R恒成立.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的對(duì)稱(chēng)軸與單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系中,△ABC的兩個(gè)頂點(diǎn)A,B坐標(biāo)分別為A(-1,0),B(1,0),平面內(nèi)兩點(diǎn)G、M同時(shí)滿(mǎn)足下列條件:(1)
GA
+
GB
+
GC
=
0
,(2)MA=MB=MC,(3)
GM
AB
則△ABC的另一個(gè)頂點(diǎn)C的軌跡方程為
x2+
y2
3
=1(y≠0)
x2+
y2
3
=1(y≠0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)系中,已知射線OA:x-y=0(x≥0),OB:
3
x+3y=0(x≥0),過(guò)點(diǎn)P(a,0)(a>0)作直線l分別交射線OA,OB于A,B兩點(diǎn),且
AP
=2
PB
,則直線l的斜率為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案