【題目】如圖,PA垂直于以AB為直徑的圓所在平面,C為圓上異于AB的任意一點(diǎn),垂足為E,點(diǎn)FPB上一點(diǎn),則下列判斷中不正確的是( )﹒

A.平面PACB.C.D.平面平面PBC

【答案】C

【解析】

根據(jù)線面垂直的性質(zhì)及判定,可判斷ABC選項(xiàng),由面面垂直的判定可判斷D.

對(duì)于APA垂直于以AB為直徑的圓所在平面,而底面圓面,則,

又由圓的性質(zhì)可知,且,

平面PAC.所以A正確;

對(duì)于B,由A可知,由題意可知,且,所以平面,而平面,所以,所以B正確;

對(duì)于C,由B可知平面,因而與平面不垂直,所以不成立,所以C錯(cuò)誤.

對(duì)于D,由A、B可知,平面PAC,平面,由面面垂直的性質(zhì)可得平面平面PBC.所以D正確;

綜上可知,C為錯(cuò)誤選項(xiàng).

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示, 平面,點(diǎn)在以為直徑的上, , ,點(diǎn)為線段的中點(diǎn),點(diǎn)上,且.

)求證: 平面平面

)求證: 平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】扎比瓦卡是2018年俄羅斯世界杯足球賽吉祥物,該吉祥物以西伯利亞平原狼為藍(lán)本.扎比瓦卡,俄語意為“進(jìn)球者”.某廠生產(chǎn)“扎比瓦卡”的固定成本為15000元,每生產(chǎn)一件“扎比瓦卡”需要增加投入20元,根據(jù)初步測(cè)算,每個(gè)銷售價(jià)格滿足函數(shù),其中x是“扎比瓦卡”的月產(chǎn)量(每月全部售完).

1)將利潤(rùn)表示為月產(chǎn)量的函數(shù);

2)當(dāng)月產(chǎn)量為何值時(shí),該廠所獲利潤(rùn)最大?最大利潤(rùn)是多少?(總收益=總成本+利潤(rùn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體 中, 分別為 的中點(diǎn),點(diǎn) 是底面內(nèi)一點(diǎn),且 平面 ,則 的最大值是( )

A. B. 2 C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知{an}是等差數(shù)列,{bn}是各項(xiàng)均為正數(shù)的等比數(shù)列,且b1a11,b3a4,b1b2b3a3a4.

(1)求數(shù)列{an},{bn}的通項(xiàng)公式;

(2)設(shè)cnanbn,求數(shù)列{cn}的前n項(xiàng)和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱臺(tái)中, 分別是, 的中點(diǎn), , 平面,且.

1)證明: 平面

2)若, 為等邊三角形,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)有兩個(gè)極值點(diǎn).

(1)求實(shí)數(shù)的取值范圍;

(2)求證: ,其中為自然對(duì)數(shù)的底數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)為拋物線 的焦點(diǎn),點(diǎn)是準(zhǔn)線上的動(dòng)點(diǎn),直線交拋物線兩點(diǎn),若點(diǎn)的縱坐標(biāo)為,點(diǎn)為準(zhǔn)線軸的交點(diǎn).

(1)求直線的方程;

(2)求的面積范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓左右焦點(diǎn)為,左頂點(diǎn)為A(-2.0),上頂點(diǎn)為B,且∠=.

(1)求橢圓C的方程;

(2)探究軸上是否存在一定點(diǎn)P,過點(diǎn)P的任意直線與橢圓交于MN不同的兩點(diǎn),MN不與點(diǎn)A重合,使得 為定值,若存在,求出點(diǎn)P;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案