A. | [e2-$\frac{2\sqrt{5}}{5}$,e2+$\frac{2\sqrt{5}}{5}$] | B. | [e2-$\frac{2\sqrt{5}}{5}$,e2+$\frac{2\sqrt{5}}{5}$) | C. | (e2-$\frac{2\sqrt{5}}{5}$,e2+$\frac{2\sqrt{5}}{5}$] | D. | (e2-$\frac{2\sqrt{5}}{5}$,e2+$\frac{2\sqrt{5}}{5}$) |
分析 由關于x的不等式f(x)≤$\frac{1}{5}$有解,可得 $\frac{1}{5}$≥$\frac{{{(e}^{2}-a)}^{2}}{4}$有解,可得$\sqrt{\frac{1}{5}}$≥$\frac{{|e}^{2}-a|}{2}$,解絕對值不等式,求得a的范圍.
解答 解:∵函數(shù)$f(x)=\frac{{{{({e^2}-a)}^2}}}{4}+{(x-a)^2}$(a∈R),關于x的不等式$f(x)≤\frac{1}{5}$有解,
即 (x-a)2≤$\frac{1}{5}$-$\frac{{{(e}^{2}-a)}^{2}}{4}$有解,∴$\frac{1}{5}$-$\frac{{{(e}^{2}-a)}^{2}}{4}$≥0 有解,即 $\frac{1}{5}$≥$\frac{{{(e}^{2}-a)}^{2}}{4}$有解,∴$\sqrt{\frac{1}{5}}$≥$\frac{{|e}^{2}-a|}{2}$,
∴|e2-a|≤$\frac{2\sqrt{5}}{5}$,∴-$\frac{2\sqrt{5}}{5}$≤a-e2≤$\frac{2\sqrt{5}}{5}$,e2-$\frac{2\sqrt{5}}{5}$≤a≤e2+$\frac{2\sqrt{5}}{5}$,
故選:A.
點評 本題主要考查絕對值不等式的解法,函數(shù)的能成立問題,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{4}{3}$ | B. | $\frac{5}{4}$ | C. | $\frac{5}{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | “x<1”是“l(fā)og2(x+1)<1”的充分不必要條件 | |
B. | 命題“?x>0,2x>1”的否定是,“?x0≤0,${2}^{{x}_{0}}$≤1” | |
C. | 命題“若a≤b,則ac2≤bc2”的逆命題是真命題 | |
D. | 命題“若a+b≠5,則a≠2或b≠3”的逆否命題為真命題 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com