已知點A(m,n),G(
m
3
,
n
3
),求|AG|的值.
考點:點到直線的距離公式
專題:直線與圓
分析:本題已知兩點A、G的坐標,可以直接利用兩點間距離公式得到|AG|的長,即本題結論.
解答: 解:∵點A(m,n),G(
m
3
,
n
3
),
∴|AG|=
(m-
m
3
)
2
+(n-
n
3
)
2
=
2
3
m2+n2

∴|AG|的值為
2
3
m2+n2
點評:本題考查的是兩點間的距離公式,本題計算量不大,屬于容易題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

圓A:(x-1)2+(y-1)2=4,圓B:(x-2)2+(y-2)2=9,圓A和圓B的公切線有( 。
A、4條B、3條C、2條D、1條

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-alnx在(1,2]上是增函數(shù),g(x)=x-a
x
在(0,1)上為減函數(shù),有以下四個結論:①a的取值有無數(shù)個;
②a的取值是唯一的;
③當x>0時,f(x)≥g(x)+2恒成立,當且僅當x=2時取等號;
④當b>-1時,若f(x)≥2bx-
1
x2
在x∈(0,1]內恒成立,則b的取值范圍是(-1,1].
其中正確的結論是( 。
A、①③B、②③C、②④D、③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù),當x>0時,f(x)=-x2+2x,求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=ax2+(a-1)x+2在區(qū)間(-∞,4]上是減函數(shù),那么實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=xex的導函數(shù)f′(x)等于( 。
A、(1+x)ex
B、xex
C、ex
D、2xex

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=cos(ωx-
π
2
)(ω>0)
在區(qū)間[0,1]內至少出現(xiàn)2次極值,則ω的最小值為( 。
A、
π
2
B、
3
2
π
C、
2
3
π
D、
5
6
π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

復數(shù)(a2-a-2)+(|a-1|-1)i(a∈R)不是純虛數(shù),則有( 。
A、a≠0B、a≠2
C、a≠0且a≠2D、a≠-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

集合A={x|x2-x-2<0},B={x||x|<1},則( 。
A、A?BB、B?A
C、A=BD、A∩B=∅

查看答案和解析>>

同步練習冊答案