【題目】為了貫徹落實(shí)黨中央對(duì)新冠肺炎疫情防控工作的部署和要求,堅(jiān)決防范疫情向校園蔓延,切實(shí)保障廣大師生身體健康和生命的安全,教育主管部門決定通過電視頻道、網(wǎng)絡(luò)平臺(tái)等多種方式實(shí)施線上教育教學(xué)工作.某教育機(jī)構(gòu)為了了解人們對(duì)其數(shù)學(xué)網(wǎng)課授課方式的滿意度,從經(jīng)濟(jì)不發(fā)達(dá)的A城市和經(jīng)濟(jì)發(fā)達(dá)的B城市分別隨機(jī)調(diào)查了20個(gè)用戶,得到了一個(gè)用戶滿意度評(píng)分的樣本,并繪制出莖葉圖如下:
若評(píng)分不低于80分,則認(rèn)為該用戶對(duì)此教育機(jī)構(gòu)授課方式“認(rèn)可”,否則認(rèn)為該用戶對(duì)此教育機(jī)構(gòu)授課方式“不認(rèn)可”.
(Ⅰ)請(qǐng)根據(jù)此樣本完成下列2×2列聯(lián)表,并據(jù)此列聯(lián)表分析,能否有95%的把握認(rèn)為城市經(jīng)濟(jì)狀況與該市的用戶認(rèn)可該教育機(jī)構(gòu)授課方式有關(guān)?
認(rèn)可 | 不認(rèn)可 | 合計(jì) | |
A城市 | |||
B城市 | |||
合計(jì) |
(Ⅱ)在樣本A,B兩個(gè)城市對(duì)此教育機(jī)構(gòu)授課方式“認(rèn)可”的用戶中按分層抽樣的方法抽取6人,若在此6人中任選2人參加數(shù)學(xué)競(jìng)賽,求A城市中至少有1人參加的概率.
參考公式:,其中.
參考數(shù)據(jù):
0.10 | 0.05 | 0.025 | |
2.706 | 3.841 | 5.024 |
【答案】(Ⅰ)列聯(lián)表詳見解析,沒有95%的把握認(rèn)為城市經(jīng)濟(jì)狀況與該市的用戶認(rèn)可該教育機(jī)構(gòu)授課方式有關(guān);(Ⅱ).
【解析】
(Ⅰ)根據(jù)題意得2×2列聯(lián)表,根據(jù)公式計(jì)算可得,結(jié)合臨界值表分析可得結(jié)果;
(Ⅱ)根據(jù)分層抽樣可知A市抽取2人,設(shè)為,,B市抽取4人,設(shè)為.然后列舉出所有基本事件和A城市中至少有1人參加的事件,最后利用古典概型概率公式計(jì)算可的結(jié)果.
(Ⅰ)由題意可得列聯(lián)表如下:
認(rèn)可 | 不認(rèn)可 | 合計(jì) | |
A城市 | 5 | 15 | 20 |
B城市 | 10 | 10 | 20 |
合計(jì) | 15 | 25 | 40 |
,
所以沒有95%的把握認(rèn)為城市經(jīng)濟(jì)狀況與該市的用戶認(rèn)可該教育機(jī)構(gòu)授課方式有關(guān).
(Ⅱ)A市抽取人,設(shè)為,,B市抽取人,設(shè)為.
從以上6人中任選2人參加數(shù)學(xué)競(jìng)賽的所有可能情況有,共15種
設(shè)“A城市至少有
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)求曲線在處的切線方程;
(2)對(duì)任意,恒成立,求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),試求方程的根的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年,河南省鄭州市的房?jī)r(jià)依舊是鄭州市民關(guān)心的話題.總體來說,二手房房?jī)r(jià)有所下降,相比二手房而言,新房市場(chǎng)依然強(qiáng)勁,價(jià)格持續(xù)升高.已知銷售人員主要靠售房提成領(lǐng)取工資.現(xiàn)統(tǒng)計(jì)鄭州市某新房銷售人員一年的工資情況的結(jié)果如圖所示,若近幾年來該銷售人員每年的工資總體情況基本穩(wěn)定,則下列說法正確的是( )
A.月工資增長(zhǎng)率最高的為8月份
B.該銷售人員一年有6個(gè)月的工資超過4000元
C.由此圖可以估計(jì),該銷售人員2020年6,7,8月的平均工資將會(huì)超過5000元
D.該銷售人員這一年中的最低月工資為1900元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),若,求的取值范圍;
(2)若定義在上奇函數(shù)滿足,且當(dāng)時(shí),,求在上的解析式;
(3)對(duì)于(2)中的,若關(guān)于的不等式在上恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了貫徹落實(shí)黨中央對(duì)新冠肺炎疫情防控工作的部署和要求,堅(jiān)決防范疫情向校園蔓延,切實(shí)保障廣大師生身體健康和生命的安全,教育主管部門決定通過電視頻道、網(wǎng)絡(luò)平臺(tái)等多種方式實(shí)施線上教育教學(xué)工作.某教育機(jī)構(gòu)為了了解人們對(duì)其數(shù)學(xué)網(wǎng)課授課方式的滿意度,從經(jīng)濟(jì)不發(fā)達(dá)的A城市和經(jīng)濟(jì)發(fā)達(dá)的B城市分別隨機(jī)調(diào)查了20個(gè)用戶,得到了一個(gè)用戶滿意度評(píng)分的樣本,并繪制出莖葉圖如下:
若評(píng)分不低于80分,則認(rèn)為該用戶對(duì)此教育機(jī)構(gòu)授課方式“認(rèn)可”,否則認(rèn)為該用戶對(duì)此教育機(jī)構(gòu)授課方式“不認(rèn)可”.
(1)請(qǐng)根據(jù)此樣本完成下列2×2列聯(lián)表,并據(jù)此列聯(lián)表分析,能否有95%的把握認(rèn)為城市經(jīng)濟(jì)狀況與該市的用戶認(rèn)可該教育機(jī)構(gòu)授課方式有關(guān)?
認(rèn)可 | 不認(rèn)可 | 合計(jì) | |
A城市 | |||
B城市 | |||
合計(jì) |
(2)以該樣本中A,B城市的用戶對(duì)此教育機(jī)構(gòu)授課方式“認(rèn)可”的頻率分別作為A,B城市用戶對(duì)此教育機(jī)構(gòu)授課方式“認(rèn)可”的概率.現(xiàn)從A城市和B城市的所有用戶中分別隨機(jī)抽取2個(gè)用戶,用X表示這4個(gè)用戶中對(duì)此教育機(jī)構(gòu)授課方式“認(rèn)可”的用戶個(gè)數(shù),求X的分布列.
參考公式:,其中.
參考數(shù)據(jù):
0.10 | 0.05 | 0.025 | |
2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若雙曲線的實(shí)軸長(zhǎng)為6,焦距為10,右焦點(diǎn)為,則下列結(jié)論正確的是( )
A.的漸近線上的點(diǎn)到距離的最小值為4B.的離心率為
C.上的點(diǎn)到距離的最小值為2D.過的最短的弦長(zhǎng)為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠生產(chǎn)不同規(guī)格的一種產(chǎn)品,根據(jù)檢測(cè)標(biāo)準(zhǔn),其合格產(chǎn)品的質(zhì)量與尺寸之間近似滿足關(guān)系式(b,c為大于0的常數(shù)).按照某項(xiàng)指標(biāo)測(cè)定,當(dāng)產(chǎn)品質(zhì)量與尺寸的比在區(qū)間內(nèi)時(shí)為優(yōu)等品.現(xiàn)隨機(jī)抽取6件合格產(chǎn)品,測(cè)得數(shù)據(jù)如下:
尺寸x(mm) | 38 | 48 | 58 | 68 | 78 | 88 |
質(zhì)量 | 16.8 | 18.8 | 20.7 | 22.4 | 24 | 25.5 |
質(zhì)量與尺寸的比 | 0.442 | 0.392 | 0.357 | 0.329 | 0.308 | 0.290 |
(1)現(xiàn)從抽取的6件合格產(chǎn)品中再任選2件,求選中的2件均為優(yōu)等品的概率;
(2)根據(jù)測(cè)得數(shù)據(jù)作了初步處理,得相關(guān)統(tǒng)計(jì)量的值如下表:
75.3 | 24.6 | 18.3 | 101.4 |
根據(jù)所給統(tǒng)計(jì)量,求y關(guān)于x的回歸方程.
附:對(duì)于樣本,其回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左右焦點(diǎn)分別為,,以,,和為頂點(diǎn)的梯形的高為,面積為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè),為橢圓上的任意兩點(diǎn),若直線與圓相切,求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在矩形中,,沿直線BD將△ABD折成,使得點(diǎn)在平面上的射影在內(nèi)(不含邊界),設(shè)二面角的大小為,直線 ,與平面中所成的角分別為,則( )
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com