已知點P在定圓O的圓內或圓周上,動圓C過點P與定圓O相切,則動圓C的圓心軌跡可能是( 。
A、圓或橢圓成雙曲線
B、兩條射線或圓或拋物線
C、兩條射線或圓或橢圓
D、橢圓或雙曲線或拋物線
考點:軌跡方程
專題:計算題,圓錐曲線的定義、性質與方程
分析:分類討論:當點P在定圓O的圓周上、點P在定圓O內時(非圓心)、P與O重合,即可得出結論.
解答: 解:當點P在定圓O的圓周上時,圓C與圓O內切或外切,O,P,C三點共線,∴軌跡為兩條射線;
當點P在定圓O內時(非圓心),|OC|+|PC|=r0為定值,軌跡為橢圓;
當P與O重合時,圓心軌跡為圓.
故選:C.
點評:本題易因討論不全,或找錯關系而出現(xiàn)錯誤.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
1+cos2x
sin2x
的周期是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x1+x13=3,x2+
3x2
=3,求x1+x2的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若a,b,c∈(0,+∞),證明:
1
a
+
1
b
+
1
c
2
a+b
+
2
b+c
+
2
c+a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在四棱錐P-ABCD中,ABCD是正方形,PA⊥底面ABCD,且PA=AB=a.
(1)求異面直線CD與PB所成的角;
(2)求直線PC與平面ABCD所成角正切值;
(3)求二面角P-CD-A的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若10件產品中包含2件廢品,今在其中任取兩件,求:
(1)取出的兩件中至少有一件是廢品的概率;
(2)已知取出的兩件中有一件是廢品的條件下,另一件也是廢品的概率;
(3)已知兩件中有一件不是廢品的條件下,另一件是廢品的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=ln(x2+1),g(x)=(
1
3
)x-m
,若?x1∈[0,3],?x2∈[1,2]使得f(x1)≥g(x2)則實數(shù)m的取值范圍是( 。
A、[
1
9
,+∞)
B、(-∞,
1
9
]
C、[
1
3
,+∞)
D、(-∞,-
1
3
]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ln(3-x)+x+2
(1)設函數(shù)g(x)=f(x)+mx(m∈R),若g(x)在區(qū)間(-∞,2]上是增函數(shù),求實數(shù)m的取值范圍;
(2)設h(x)=f(-x),將函數(shù)h(x)的圖象向右平移3個單位,再向下平移5個單位得到ω(x)的圖象.
①試確定函數(shù)ω(x)的單調區(qū)間;
②證明:ln(n!)2<n(n+1)(其中n∈Z,n≥1,n!=1×2×3×…×n)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

我們把可表示為兩個連續(xù)正偶數(shù)的平方差的正整數(shù)稱為“理想數(shù)”,則在1~2012(包括2012)這2012個數(shù)中,共有“理想數(shù)”的個數(shù)是( 。
A、502B、503
C、251D、252

查看答案和解析>>

同步練習冊答案