精英家教網 > 高中數學 > 題目詳情
5.已知函數f(x)=mex+x2+nx,{x|f(x)=0}={x|f(f(x))=0}≠∅,則m+n的取值范圍為( 。
A.(0,4)B.[0,4)C.[0,4]D.(4,+∞)

分析 由{x|f(x)=0}={x|f(f(x))=0}可得f(0)=0,從而求得m=0;從而化簡f(f(x))=(x2+nx)(x2+nx+n)=0,從而討論求得.

解答 解:設x1∈{x|f(x)=0}={x|f(f(x))=0},
∴f(x1)=f(f(x1))=0,
∴f(0)=0,
即f(0)=m=0,
故m=0;
故f(x)=x2+nx,
f(f(x))=(x2+nx)(x2+nx+n)=0,
當n=0時,成立;
當n≠0時,0,-n不是x2+nx+n=0的根,
故△=n2-4n<0,
解得:0<n<4;
綜上所述,0≤n+m<4;
故選:B.

點評 本題考查了函數與集合的關系應用及分類討論的思想應用,同時考查了方程的根的判斷,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

15.已知P是拋物線y2=4x上一點,F(xiàn)是該拋物線的焦點,則以PF為直徑且過(0,2)的圓的標準方程為(x-2.5)2+(y-2)2=6.25.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

16.若實數x,y滿足關系式x+y+1=0,則式子S=$\sqrt{{x}^{2}+{y}^{2}-2x-2y+2}$的最小值為$\frac{3\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

13.已知數列{an}的前n項和Sn滿足an+2SnSn-1=0(n≥2),a1=1,求數列{an}的前n項和Sn

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

20.若x,y滿足x2-2xy+3y2=4,則$\frac{1}{{x}^{2}+{y}^{2}}$的最大值與最小值的和是1.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

2.在平行四邊形ABCD中,AB⊥BD,4•AB2+2•BD2=1.將此平行四邊形沿BD折成直二面角,則三棱錐A-BCD外接球的表面積為$\frac{π}{2}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

9.已知等差數列{an}前n項的和為Sn,且(2n-1)Sn+1-(2n+1)Sn=4n2-1(n∈N
(1)求a1;
(2)求Sn,an;
(3)設bn=|an-30|,求{bn}的前n項的和為Tn

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

6.已知函數f(x)=-$\frac{{x}^{2}+2x+4}{x}$,g(x)=lnx-$\frac{1}{2}$x2+$\frac{9}{2}$,實數a,b滿足a<b<0,若?x1∈[a,b],?x2∈(0,+∞),使得f(x1)=g(x2)成立,則b-a的最大值為( 。
A.3$\sqrt{2}$B.4C.4$\sqrt{3}$D.2$\sqrt{5}$

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

7.設數列{an}滿足a1=1,(1-an+1)(1+an)=1(n∈N+),則$\sum_{k=1}^{100}{({{a_k}{a_{k+1}}})}$的值為$\frac{100}{101}$.

查看答案和解析>>

同步練習冊答案