分析 an+2SnSn-1=0(n≥2),a1=1,可得:Sn-Sn-1+2SnSn-1=0(n≥2),變形為:$\frac{1}{{S}_{n}}-\frac{1}{{S}_{n-1}}$=2,再利用等差數(shù)列的通項公式即可得出.
解答 解:∵an+2SnSn-1=0(n≥2),a1=1,
∴Sn-Sn-1+2SnSn-1=0(n≥2),
變形為:$\frac{1}{{S}_{n}}-\frac{1}{{S}_{n-1}}$=2,
∴數(shù)列$\{\frac{1}{{S}_{n}}\}$是等差數(shù)列,首項為1,公差為2.
∴$\frac{1}{{S}_{n}}$=1+2(n-1)=2n-1,
∴Sn=$\frac{1}{2n-1}$(n=1時也成立).
點評 本題考查了遞推關(guān)系、等差數(shù)列的通項公式、“裂項求和”方法,考查了分類討論方法、推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,4) | B. | [0,4) | C. | [0,4] | D. | (4,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{n(n+1)}{2}$+1-2n | B. | $\frac{n(n+1)}{2}$+1-2-n | C. | $\frac{n(n-1)}{2}$+1-2-n | D. | $\frac{n(n-1)}{2}$+1-2n |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com