【題目】已知若橢圓)交軸于,兩點(diǎn),點(diǎn)是橢圓上異于,的任意一點(diǎn),直線分別交軸于點(diǎn),,則為定值.

1)若將雙曲線與橢圓類比,試寫出類比得到的命題;

2)判定(1)類比得到命題的真假,請(qǐng)說明理由.

【答案】1)見解析;(2)命題為真命題,證明見解析.

【解析】

1)根據(jù)類比推理的基本原則可直接寫出結(jié)果;

2)設(shè),,,表示出直線方程后可求得點(diǎn)坐標(biāo),由此得到,同理得到,根據(jù)平面向量的數(shù)量積運(yùn)算可構(gòu)造方程,結(jié)合點(diǎn)在雙曲線上可化簡(jiǎn)得到結(jié)果.

1)類比得命題:若雙曲線軸于兩點(diǎn),點(diǎn)是雙曲線上異于的任意一點(diǎn),直線分別交軸于點(diǎn),則為定值.

2)在(1)中類比得到的命題為真命題,證明如下:

不妨設(shè),,,則

∴直線方程為.

,則,∴點(diǎn)坐標(biāo)為.

,∴.

同法可求得:.

.

又∵,∴.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題甲:對(duì)任意實(shí)數(shù),不等式恒成立;命題乙:已知滿足,且恒成立.

1)分別求出甲乙為真命題時(shí),實(shí)數(shù)的取值范圍;

2)求實(shí)數(shù)的取值范圍,使命題甲乙中有且只有一個(gè)真命題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次數(shù)學(xué)測(cè)驗(yàn)后,數(shù)學(xué)老師將某班全體學(xué)生(50人)的數(shù)學(xué)成績(jī)進(jìn)行初步統(tǒng)計(jì)后交給其班主任(如表).

分?jǐn)?shù)

5060

60~70

70-80

80-90

90~100

人數(shù)

2

6

10

20

12

請(qǐng)你幫助這位班主任完成下面的統(tǒng)計(jì)分析工作:

1)列出頻率分布表;

2)畫出頻率分布直方圖及頻率折線圖;

3)從頻率分布直方圖估計(jì)出該班同學(xué)成績(jī)的眾數(shù)、中位數(shù)和平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】交強(qiáng)險(xiǎn)是車主必須為機(jī)動(dòng)車購買的險(xiǎn)種,若普通6座以下私家車投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為元,在下一年續(xù)保時(shí),實(shí)行的是費(fèi)率浮動(dòng)機(jī)制,保費(fèi)與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費(fèi)率也就是越高,具體浮動(dòng)情況如下表:

交強(qiáng)險(xiǎn)浮動(dòng)因素和浮動(dòng)費(fèi)率比率表

浮動(dòng)因素

浮動(dòng)比率

上一個(gè)年度未發(fā)生有責(zé)任道路交通事故

下浮10%

上兩個(gè)年度未發(fā)生有責(zé)任道路交通事故

下浮20%

上三個(gè)及以上年度未發(fā)生有責(zé)任道路交通事故

下浮30%

上一個(gè)年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故

0%

上一個(gè)年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故

上浮10%

上一個(gè)年度發(fā)生有責(zé)任道路交通死亡事故

上浮30%

某機(jī)構(gòu)為了 某一品牌普通6座以下私家車的投保情況,隨機(jī)抽取了60輛車齡已滿三年的該品牌同型號(hào)私家車的下一年續(xù)保時(shí)的情況,統(tǒng)計(jì)得到了下面的表格:

類型

數(shù)量

10

5

5

20

15

5

以這60輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:

(1)按照我國《機(jī)動(dòng)車交通事故責(zé)任強(qiáng)制保險(xiǎn)條例》汽車交強(qiáng)險(xiǎn)價(jià)格的規(guī)定, ,記為某同學(xué)家的一輛該品牌車在第四年續(xù)保時(shí)的費(fèi)用,求的分布列與數(shù)學(xué)期望;(數(shù)學(xué)期望值保留到個(gè)位數(shù)字)

(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基本保費(fèi)的車輛記為事故車,假設(shè)購進(jìn)一輛事故車虧損5000元,一輛非事故車盈利10000元:

①若該銷售商購進(jìn)三輛(車齡已滿三年)該品牌二手車,求這三輛車中至多有一輛事故車的概率;

②若該銷售商一次購進(jìn)100輛(車齡已滿三年)該品牌二手車,求他獲得利潤的期望值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】西瓜是夏日消暑的好水果,西瓜的銷售價(jià)格(單位:千元/噸)與西瓜的年產(chǎn)量(單位:噸)有關(guān),下表數(shù)據(jù)為某地區(qū)連續(xù)6年來西瓜的年產(chǎn)量及對(duì)應(yīng)的西瓜銷售價(jià)格.

1

2

3

4

5

6

1)若有較強(qiáng)的線性相關(guān)關(guān)系,根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出的線性回歸直線方程(系數(shù)精確到);

2)若每噸西瓜的成本為4810元,假設(shè)所有西瓜可以全部賣出,預(yù)測(cè)當(dāng)年產(chǎn)量為多少噸 時(shí)年利潤最大?

參考公式及數(shù)據(jù):

p>對(duì)于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為,,其中,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個(gè)焦點(diǎn)坐標(biāo)分別是、,并且經(jīng)過點(diǎn).

(1)求橢圓的方程;

(2)若直線與圓相切,并與橢圓交于不同的兩點(diǎn).當(dāng),且滿足時(shí),求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為, 的極坐標(biāo)方程為.

1求直線的交點(diǎn)的軌跡的方程;

(2)若曲線上存在4個(gè)點(diǎn)到直線的距離相等,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在《爸爸去哪兒》第二季第四期中,村長給6萌娃布置一項(xiàng)搜尋空投食物的任務(wù).已知:①食物投擲地點(diǎn)有遠(yuǎn)、近兩處;②由于Grace年紀(jì)尚小,所以要么不參與該項(xiàng)任務(wù),但此時(shí)另需一位小孩在大本營陪同,要么參與搜尋近處投擲點(diǎn)的食物;③所有參與搜尋任務(wù)的小孩須被均分成兩組,一組去遠(yuǎn)處,一組去近處,那么不同的搜尋方案有______.(以數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了研究某種微生物的生長規(guī)律,研究小組在實(shí)驗(yàn)室對(duì)該種微生物進(jìn)行培育實(shí)驗(yàn).前三天觀測(cè)的該微生物的群落單位數(shù)量分別為1216,24.根據(jù)實(shí)驗(yàn)數(shù)據(jù),用y表示第天的群落單位數(shù)量,某研究員提出了兩種函數(shù)模型;;,其中a,b,c,pq,r都是常數(shù).

1)根據(jù)實(shí)驗(yàn)數(shù)據(jù),分別求出這兩種函數(shù)模型的解析式;

2)若第4天和第5天觀測(cè)的群落單位數(shù)量分別為4072,請(qǐng)從這兩個(gè)函數(shù)模型中選出更合適的一個(gè),并計(jì)算從第幾天開始該微生物群落的單位數(shù)量超過1000

查看答案和解析>>

同步練習(xí)冊(cè)答案