10.數(shù)列{an}的通項公式an=$\frac{(n-1)•{2}^{n}}{n(n+1)}$,求Sn

分析 變形an=$\frac{[2n-(n+1)]•{2}^{n}}{n(n+1)}$=$\frac{{2}^{n+1}}{n+1}-\frac{{2}^{n}}{n}$,利用“裂項求和”即可得出.

解答 解:∵an=$\frac{(n-1)•{2}^{n}}{n(n+1)}$=$\frac{[2n-(n+1)]•{2}^{n}}{n(n+1)}$=$(\frac{2}{n+1}-\frac{1}{n})×{2}^{n}$=$\frac{{2}^{n+1}}{n+1}-\frac{{2}^{n}}{n}$,
∴Sn=$(\frac{{2}^{2}}{2}-\frac{2}{1})$+$(\frac{{2}^{3}}{3}-\frac{{2}^{2}}{2})$+…+$(\frac{{2}^{n+1}}{n+1}-\frac{{2}^{n}}{n})$
=$\frac{{2}^{n+1}}{n+1}$-2.

點評 本題考查了“裂項求和”方法,考查了變形能力、推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

3.等差數(shù)列{an}中,若a1+a9=4,則a5等于(  )
A.2B.4C.-2D.-4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,AB∥DC,AB⊥AD,BC=5,DC=3,
AD=4,∠PAD=60°.
(1)若M為PA的中點,求證:DM∥平面PBC;
(2)求三棱錐D-PBC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知直線m,n和平面α,m?α,n∥m,那么“n?α”是“m∥α”的(  )
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知向量$\overrightarrow{a}$,$\overrightarrow$,|$\overrightarrow{a}$|=6,|$\overrightarrow$|=4,$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,則($\overrightarrow{a}$+2$\overrightarrow$)•($\overrightarrow{a}$-3$\overrightarrow$)=-72.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知某商品進價為26元,若要求利潤不小于30%,則銷售價至少為(精確到元)( 。
A.33元B.34元C.35元D.36元

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的離心率為$\frac{3}{2}$,過其右焦點F(3,0),且垂直于x軸的直線與雙曲線交于點A、B,則|AB|=( 。
A.4B.5C.8D.10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.求與雙曲線$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{4}$=1有公共焦點,且過點(3$\sqrt{2}$,2)的雙曲線的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.下列函數(shù)中,最小正周期為π且圖象關于y軸對稱的函數(shù)是( 。
A.$y=cos(2x+\frac{π}{2})$B.y=|sinx|C.$y={sin^2}(x-\frac{π}{4})$D.y=sin2x+cos2x

查看答案和解析>>

同步練習冊答案